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Fig. 1. Our method composes a neural spline flow head warp with an emi�er tail warp to achieve approximate product importance sampling of environment
lighting with other terms (cosine and BRDF). Applied to cosine-weighted environment sampling on the Temple scene, we demonstrate significant variance
reduction over multiple importance sampling (MIS) at equal rendering time (35ms, 4 spp). We also visualize the conditional distribution learned by our model
at the shading point marked in green. Our learned PDF closely matches the true (unshadowed) product. Our head warp does not have to learn the intricate
details of the environment map already captured by the tail warp, and can be represented as a compact normalizing flow that can be baked for fast inference.

Achieving high e�ciency in modern photorealistic rendering hinges on
using Monte Carlo sampling distributions that closely approximate the illu-
mination integral estimated for every pixel. Samples are typically generated
from a set of simple distributions, each targeting a di�erent factor in the
integrand, which are combined via multiple importance sampling. The re-
sulting mixture distribution can be far from the actual product of all factors,
leading to sub-optimal variance even for direct-illumination estimation. We
present a learning-based method that uses normalizing �ows to e�ciently
importance sample illumination product integrals, e.g., the product of en-
vironment lighting and material terms. Our sampler composes a �ow head
warp with an emitter tail warp. The small conditional head warp is repre-
sented by a neural spline �ow, while the large unconditional tail is discretized
per environment map and its evaluation is instant. If the conditioning is
low-dimensional, the head warp can be also discretized to achieve even
better performance. We demonstrate variance reduction over prior methods
on a range of applications comprising complex geometry, materials and
illumination.

∗Work partly done during an internship at Adobe Research, UK.
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1 INTRODUCTION

Rendering photorealistic images using Monte Carlo methods re-
quires sampling product integrals with intricate shapes. The most
common practical approach is to construct individual estimators
that each focus on di�erent factors of the integrand and combine
them using multiple importance sampling (MIS) [Veach and Guibas
1995]. This combination yields an e�ective mixture sampling dis-
tribution; however, it is preferable to approximate the true product
of the factors, especially in complex material and lighting con�gu-
rations. Such full product sampling can greatly improve e�ciency
even the speci�c case of direct illumination estimation where the
product includes the light source, the cosine term, and the material
re�ectance (BRDF) term.
The rendering community has recently begun investigating im-

portance sampling methods based on neural probabilistic models.
Along this axis, discrete normalizing �ows (NFs) [Dinh et al. 2014;
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Rezende and Mohamed 2015] provide an elegant generative frame-
work for constructing �exible distributions by only requiring the
speci�cation of a (typically simple) base distribution and a series
of bijective transformations, or warps. Seminal works [Müller et al.
2019; Zheng and Zwicker 2019] showed that NFs can be successfully
applied to Monte Carlo rendering by learning on-the-�y from gener-
ated samples. However, despite their theoretical appeal and versatil-
ity, NF adoption in modern rendering engines has been mostly held
back by their high computational cost. Recently, Xu et al. [2023] have
shown that this may not longer hold true, proposing an NF-based
framework with practical rendering speed-ups. The ever-growing
demand for real-time photorealism has fostered the development
of shading languages where neural networks are �rst-class citizens
[Bangaru et al. 2023; Vaidyanathan et al. 2023], which is likely to
further improve performance of NFs in future shaders.

We build on these �ndings and present a method to estimate prod-
uct integrals using neural probabilistic models. Building atop NFs,
our method learns to generate samples from the product distribution
of a material model (e.g., a microfacet BRDF) and a distant emitter
(an HDR environment map). Key to our method is the composition
of a neural spline �ow with a fast emitter warp. Our model learns to
deform a uniform distribution into an intermediate one that is then
transformed to the desired product PDF. We show that imbuing our
model with a near-exact emitter warp is an e�ective inductive bias
for neural product sampling. As our head network does not need
to learn the �ne details of the environment map, it can specialize
to focus on the lower-dimensional conditional variations, which
drastically simpli�es the �tting task.
Our model is compact, shows competitive performance to tra-

ditional sampling methods, and integrates easily into an existing
rendering pipeline. We implement it into the Mitsuba 3 renderer
[Jakob et al. 2022b] and demonstrate reduced variance and improved
visual quality on a variety of product sampling applications and
scene con�gurations.

In summary, our key contributions are:

• A new compositional approach for product importance sam-
pling based on normalizing �ows, which combines a small
but general head warp, represented by a neural spline �ow,
with a large tail warp, precomputed per environment map
for fast evaluation;

• a novel neural architecture based on a circular variant of
rational-quadratic splines; and

• integration into a practical rendering system showing im-
proved performance over previous works in terms of equal
sample count and equal time.

2 BACKGROUND AND RELATED WORK

Monte Carlo integration. We are interested in solving the surface
re�ection equation [Kajiya 1986] which states that the outgoing
radiance !o at a point x in direction 8o is given by

!o (x,8o) =

∫

Ω

5 ⊥r (x,8o,8) !(8)+ (x,8) d8 . (1)

In this integral over directions 8 on the unit sphere Ω, 5 ⊥r is the
(cosine-weighted) bidirectional re�ectance distribution function
(BRDF), ! denotes radiance emitted by a light source which we

consider to be distant (i.e., an environment map), and the visibility
indicator function + is zero when that radiance is blocked by the
scene geometry.

We construct a Monte Carlo (MC) estimator for the above integral:

⟨!o⟩# =

1

#

#
∑

8=1

5 ⊥r (x,8o,88 ) !(88 )+ (x,88 )

? (88 | x,8o)
, 88 ∼ ?, (2)

which draws # directions 88 from a distribution with probability
density function (PDF) ? . The variance of ⟨!o⟩# becomes small
when ? is approximately proportional to the product 5 ⊥r · ! · + .
Finding such a PDF in practice is di�cult, and in practice multiple
importance sampling (MIS) [Veach and Guibas 1995] is used to
combine separate estimators of the above form, each using a PDF
that targets one of the factors. MIS is suboptimal as it is equivalent
to using a mixture sampling distribution (rather than a product) and
can be overly defensive [Karlík et al. 2019]. Devising distributions
with closer proportionality to the actual product integrand remains
the best way to achieve low estimation variance.

Product importance sampling. To estimate illumination on glossy
surfaces from distant emitters, Clarberg et al. [2005] proposed a
sparse wavelet representation along with a hierarchical sample
warping scheme that approximates the product. Given the wavelet’s
large memory usage, Clarberg and Akenine-Möller [2008] instead
suggested a sparse quad-tree built on-the-�y from BRDF samples
to �t the distribution. Herholz et al. [2016] estimated indirect illu-
mination via an adaptive Gaussian mixture model optimized via
expectation-maximization. Conty Estevez and Lecocq [2018] used
a proxy BRDF representation along with a spherical tabulation
technique to perform approximate product importance sampling of
multi-lobe materials. These approaches require multiple samples
per shading point to amortize the precomputation. In contrast, our
model is lightweight and remains e�cient in low-sample regimes.

Xia et al. [2020] proposed a Gaussian representation for product
importance sampling of multi-layered materials, while Villeneuve
et al. [2021] devised analytical techniques for volumetric single
scattering along rays. Unlike our framework, these methods are
tailored to speci�c appearances and cannot be easily adapted to
account for image-based lighting products.

Resampled importance sampling [Bitterli et al. 2020; Talbot 2005;
Talbot et al. 2005] approximates a target (e.g., product) distribution
by carefully picking a subset of candidate samples. The approxima-
tion quality is better the closer the candidate distribution is to the
target. Resampling can be applied atop our neural sampler.
Closest to our work is the framework of Hart et al. [2020] who

also recognized that sample warps can—in theory—be composed to
achieve perfect product importance sampling. Their work speci�-
cally targets area light sources and uses simple analytic warps to
approximately correct for the optimal transformation after sampling
from a known strategy. Our method can be seen as complementary:
we start with a more �exible, trainable neural warp and then correct
with an environment emitter warp.

Normalizing �ows. Normalizing �ows (NFs) are a class of gener-
ative models that can construct arbitrary probability distributions
[Chen et al. 2018; Dinh et al. 2014; Rezende and Mohamed 2015].
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By design, these models achieve exact likelihood computation and
e�cient sampling [Papamakarios et al. 2021], two highly desirable
properties for tasks such as density estimation, variational inference
and, importantly for us, unbiased integral estimation.
At their core, NFs operate by learning a di�eomorphism (dif-

ferentiable bijection) 5 from a simple base distribution ?Z to a
more intricate distribution ?X via a series of warps that are pa-
rameterized by neural networks. Formally, if 5 : Z → X is
an invertible transformation with tractable Jacobian determinant
J5 (I;) ) ≜ det

(

m5 (I;) )/mI)
)

and I ∼ ?Z , we can express the post-
warp density ?X via the change-of-variables formula:

?X (G ;) ) = ?Z (I)
�

� J5 (I;) )
�

�

−1
, (3)

where I = 5 −1 (G ;) ), and ) represents the parameters of the �ow
model 5 . Under this formulation, e�cient sampling of the resulting
distribution and density evaluation can be simultaneously achieved
by mapping 5 (I;) ) = G forward and evaluating the determinant
along the way. In practice, 5 is implemented as a composition
of parameterized coupling layers, each designed to have a lower-
triangular Jacobian matrix with easy to compute determinant. The
parameters ) are optimized to approximate a target measure ?∗

X
by minimizing a discrepancy metric such as Kullback–Leibler di-
vergence. If samples G ∼ ?∗

X
are available at training time, this is

equivalent to �tting the model by maximum likelihood estimation.
While most NF literature focuses on high-dimensional problems

such as image generation [Chen et al. 2019; Kingma and Dhariwal
2018], NFs shine in low-dimensional settings where remarkable
density �ts can be obtained with a fairly low parameter count. To
improve robustness, neural spline �ows [Durkan et al. 2019] intro-
duce monotonic rational-quadratic splines to build invertible �ow
transformations. We adopt the circular variant of this framework
[Rezende et al. 2020], with a uniform base distribution, and compose
it with other warps to produce high-quality target samples in a
stable manner.

Neural sampling for rendering. Normalizing �ows have recently
gained prominence in rendering for importance sampling [Müller
et al. 2019; Zheng and Zwicker 2019], with extensions to control
variates [Müller et al. 2020]. Xu et al. [2023] tackled the sampling
of neural materials [Kuznetsov et al. 2021, 2022] by conditioning
an NF model on pretrained neural feature descriptors. Zeltner et al.
[2024] instead utilized a decoder network to extract the parameters
of an analytic-lobe mixture for importance sampling complex ma-
terials; a similar approach has been explored in prior neural BRDF
works [Fan et al. 2022; Sztrajman et al. 2021]. Tangentially, Dong
et al. [2023] learned neural parametric mixtures for path guiding
by implicitly encoding the spatially varying radiance distribution
in a scene. Finally, Vicini et al. [2019] proposed a BSSRDF model
based on a variational autoencoder that learns local geometry with
low-order polynomial for subsurface scattering.

Neural samplers typically learn a full distribution from raw sam-
ples and do not leverage the existence of e�cient sampling tech-
niques for its individual factors. In contrast, our approach explicitly
integrates exact emitter sampling as a form of inductive bias into
the pipeline, which drastically simpli�es the NF �tting task.

?1 ( ·) ?2 ( · | ` ) ?1 · ?2 Naive product fit Our fit

Fig. 2. Naively fi�ing a normalizing flow (NF) model to the product of a
complex unconditioned density ?1 (image) and a simple conditioned density
?2 (Gaussian with parameterized mean `) yields a poor result. The model
is tasked with simultaneously learning the intricate shape of ?1 and the
variations in `. Instead, we apply a ?1 warp to the NF-model output, which
drastically simplifies the shape of the distribution it needs to learn. The
result is a near-perfect fit with an equal number of NF parameters.

Head
warp

Intermediate FinalUniform base

Condition

Tail
warp

Section 3.1 Section 3.2

Fig. 3. Given a shading condition, our model maps uniform points through
two warps to produce samples distributed approximately proportionally to
a target product density. The shape of our intermediate density is coarse,
similarly to a naive product fit (see Fig. 2), but leads to a precise fit when
mapped through the tail warp.

3 NEURAL WARP COMPOSITION

Our goal is to generate samples proportionally to the product of
two given densities, ?∗ (G | c) ∝ ?1 (G) ·?2 (G | c). We assume that the
unconditional density ?1 has complex shape (e.g., an unshadowed
environment map), while the conditional ?2 has simpler shape (e.g.,
BRDF parameterized by view direction, surface normal, roughness,
etc). We do not explicitly model visibility as it is scene-dependent.

We could train one monolithic �ow-based model to warp a base
distribution into the target product ?∗. Unfortunately, achieving
high run-time performance requires a compact model which would
not achieve a good �t because the product has complex shape that
varies with the condition c. We show an example in Fig. 2 on a
product of an image-based density and a Gaussian with parameter-
ized mean. With this naive strategy, a compact NF model has the
capacity to learn only the rough shape of the target distribution.

Our key insight to addressing this problem is that we can handle
the complexity and conditioning of the target separately via warp
composition. Speci�cally, instead of using one complex conditional
NF model to directly generate samples from the target product ?∗,
we use a compact conditional head NF model and feed its output to
a complex unconditional tail warp derived from ?1. This separation
drastically simpli�es the learning space of the NF model by tasking
it to �t a smoother intermediate distribution which is subsequently
transformed into the �nal complex product by the tail warp. The
latter can be constructed to e�ciently handle the intricate shape of
?1 as we will discuss below. Note that our head-warp optimization
is di�erent from simply �tting to ?2 (x | c) which would not yield the
correct product distribution. Figure 3 shows a high-level overview
of our method.
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Formally, our model 5 is the composition of a conditional NF
head warp ℎ : Z → Y, parameterized by ) , and an unconditional
non-parameterized tail warp C : Y → X:

5 (I | c;) ) ≜ (C ◦ ℎ) (I | c;) ) = C
(

ℎ(I | c;) )
)

. (4)

Provided that ℎ, C , and their inverses are all continuous, 5 : Z → X

is also a di�eomorphism and can be used to �t our target distri-
bution. Hereinafter, we will use subscripts in density notations for
disambiguation; our target product density is thus ?∗

X
(G | c) and the

density learned by our model is ?X (G | c;) ).

Application to rendering. In our application, the target density
is proportional to the product of unshadowed environment light
(?1) and cosine-weighted BRDF (?2). The shading condition c ≜

(8o, n, 1) includes view direction 8o, surface normal n, and a
material-speci�c descriptor 1 (e.g., roughness or neural-material em-
bedding). All domains coincide and are square:Z = Y = X = [0, 1]2.
The tail-warp output samples G are �nally transformed to the unit
sphere via a lat-long warp, to obtain a sampled direction 8; we omit
that warp here but plot distributions on the domain X as lat-long
maps.
Next we detail the individual warps and describe how we train

their composition via maximum likelihood estimation.

3.1 Neural-flow head warp

The goal of our head warp ℎ is to transform a base distribution ?Z
to an intermediate distribution ?Y that, when pushed through the
tail warp C , yields the target distribution, i.e., ?X ≈ ?∗

X
. To that

end, we build ℎ upon neural spline �ows [Durkan et al. 2019] which
utilize monotonic piecewise rational-quadratic splines as quantile
functions (i.e., inverse CDFs) to warp samples. We use the circular
variant of these �ows [Rezende et al. 2020] to produce samples
on the unit cylinder, since the azimuth angle in our �nal lat-long
map wraps around. One important distinction over standard NF
models is that we use a uniform base distribution on the unit square,
?Z = U[0, 1]2, to enforce compact support. This is not directly
feasible with a normal base distribution.
Figure 4 depicts our �ow model. Given the shading condition c,

a fully connected encoder network �rst predicts a feature vector
/ that couples the condition’s components in latent space. The
concatenation (c, / ) in turn conditions each of two consecutive
coupling layers that transform sample coordinates. Each layer has
its own network that infers spline parameters. To sample from the
model, we draw I ∼ U[0, 1]2 and feed it to the �rst coupling layer.
The output of the second layer, ℎ(I) = ~, is then passed to the next
warping stage.

Relation to NeuSample. Our model is inspired by NeuSample [Xu
et al. 2023] but has some key di�erences. Apart from the already
discussed architectural disparities, such as the warp composition
and the uniform base, we use a global (cylindrical) equi-rectangular
parameterizationwhile NeuSample learns on the local shading-point
hemisphere (projected onto a square). Our method thus guarantees
that every point ~ ∈ Y has a pre-image in Z by design, which is
not the case for NeuSample as it needs to learn the disk boundary
and occasionally reject out-of-domain samples.

Uniform
sampling

Coupling
layer

Circ. RQ spline

Coupling transform

Cond. encoder
(optional) Spline network

Condition

EmitterEmitter

Coupling
layer

Product PDFProduct PDFBRDF PDFBRDF PDF

Emitter PDFEmitter PDF

Learned PDFLearned PDF

Tail warp (Emitter)Tail warp (Emitter)

Head warp

Fig. 4. Given a shading condition c (view direction8o, surface normal n and
material descriptor 1), a conditioner encoder first produces a latent vector
/ . The vectors c and / condition two coupling layers, each warping samples
via a circular piecewise rational quadratic (RQ) spline whose parameters
(i.e., knot positions and derivatives) are inferred by a spline network. The
output ~ = (~0, ~1 ) is then passed through our tail warp to produce the
final sample G which is converted to a direction 8 via lat-long mapping.

3.2 Tail warp

The tail of our pipeline is an unconditional transformation of head-
warp samples ~ ∈ Y to unit directions 8. The samples ~ are �rst
mapped to unit-square points G ∈ X according to the density de�ned
by a high-dynamic-range environment image (Fig. 4, bottom right),
which are �nally lat-long projected to the sphere. Several options
for this tail warp are available, such as the common marginal row-
column scheme or the hierarchical one of Clarberg et al. [2005]. Both
can be constructed quickly but are discontinuous. This is usually not
a major problem in practice, except that discontinuities may ruin the
strati�cation of the input samples I. In our case a discontinuous tail
warp may hinder the head-warp optimization, since small variations
in Y may lead to abrupt changes in X. A smooth emitter warp is
thus desirable. But how does one construct such a warp?
We adopt a pragmatic approach and �t a large NF model to the

emitter image. By construction, a spline-based �ow guarantees a
smooth map, and since this speci�c distribution is unconditional, it
can be trained e�ciently with samples generated using any of the
two aforementioned schemes. Increasing the number of spline bins
makes the added approximation error arbitrary small.We considered
using an optimal-transport map [Feydy et al. 2019; Tong et al. 2024].
However, due to the regularization required to obtain practical OT
solutions, it did not perform well, unless the target itself was smooth
(which is far from the case in natural environment maps). Figure 5
shows how the tail-warp smoothness a�ects rendering quality.
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ReferenceReference

MSEMSE 0.3230.323 0.6790.679

NF tailNF tail Hier. tailHier. tail

Fig. 5. Using a hierarchical tail warp exhibits discontinuities and hinders
head-warp optimization.We do not show the standardmarginal row-column
warp as it performs even worse. In contrast, our NF-based tail warp makes
for a smooth mapping and halves the MSE of images rendered with our full
model. Colors encode the mapping from the unit square.

We train the tail NF model and discretize its forward and in-
verse warps, along with their respective densities, at high resolution.
Sampling and PDF evaluation then reduce to simple bilinearly in-
terpolated lookups. Note that this warp is constructed (in isolation)
to transform uniform density to the emitter-image density. Next,
we optimize the head warp to feed nonuniform input such that the
output density is proportional to the target product.

3.3 Head-warp training

We optimize the head-warp parameters ) by minimizing the forward
Kullback–Leibler (KL) loss LKL () ) between the target density ?∗

X
and the �t ?X (below we omit the condition c for brevity):

LKL () ) = �KL

[

?∗X (G)


?X (G ;) )
]

(5)

= −EG∼?∗
X

[

log?X (G ;) )
]

+ const. (6)

= −EG∼?∗
X

[

log
�

� J5 (I;) )
�

�

−1]
+ const., (7)

where we have expanded Eq. (3) on the last line, with I = 5 −1 (G ;) ),
and used the fact that our base distribution ?Z is uniform. This
objective amounts to maximizing the log-likelihood w.r.t. ?X using
data samples drawn from the target ?∗

X
. The sampling is done via

on-the-�y tabulation and is detailed in Section 4.
Given that our model is the composition 5 = C ◦ ℎ, the target

samples are mapped backward through the inverse composition
5 −1 = ℎ−1 ◦ C−1; the corresponding Jacobians can be readily evalu-
ated along the way. More precisely, we have

log
�

� J5 (I;) )
�

�

−1
= log

�

� JC (ℎ(I;) )) Jℎ (I;) )
�

�

−1
(8)

= log
�

� JC
(

ℎ(I;) )
)
�

�

−1
+ log

�

� Jℎ (I;) )
�

�

−1
(9)

= log
�

� JC−1 (G)
�

� + log
�

� Jℎ−1

(

C−1 (G);)
)
�

�, (10)

where in Eq. (10) we have applied the inverse function theorem.

Entropic regularization. KL-divergence optimization is susceptible
to producing distributions that are overly aggressive in �tting high-
density regions, leaving low density regions under-represented to
the extent of producing �re�ies in MC estimation. Theoretically
j2 is a better loss that avoids �re�ies, however it tends to be too
conservative, producing overall higher noise levels, as also observed
by Müller et al. [2019].

To improve robustness, we opt for a simpler approach that adds
an entropic regularization term to our objective function (7):

L() ) = LKL () ) + _LH () ), where (11)

LH () ) = EG∼?∗
X
[− log ?X (G ;) )] . (12)

This regularizer penalizes strong mismatched densities and miti-
gates degenerate cases that may lead to regions with too high vari-
ance responsible for �re�ies. We set _ = 0.0001 for all experiments
which we found strikes a good balance between outlier suppression
and overall variance reduction.

Discussion. Our training scheme requires samples G ∼ ?∗
X
from

the target. It is tempting to instead optimize the reverse KL diver-
gence where the expectation is taken over model-generated samples
G ∼ ?X . That scheme does not necessitate discretizing the target ?∗

X
whose evaluation is required only up to a normalization constant
[Papamakarios et al. 2021]. Unfortunately, we found that reverse
KL optimization is generally too unstable for training with warp
compositions. We hypothesize that better initialization schemes for
the head �ow may alleviate some of the numerical di�culties.

4 APPLICATIONS AND RESULTS

We implemented our method in PyTorch [Paszke et al. 2019], with
fused neural networks in CUDA [Müller 2021], and integrated it into
Mitsuba 3’s [Jakob et al. 2022b,a] wavefront path-tracing renderer.
In this section we evaluate its performance on several applications.
We begin by describing our experimental setup.

Model hyperparameters. Our head warp comprises a small con-
ditioner network followed by 2 coupling layers, which we found
strikes a good balance between speed and sample quality. We use 32
spline bins. All networks have two layers with 64 neurons each with
leaky ReLU activations, for a total of 36k parameters. Our emitter tail
warp is a much larger �ow network with 128 bins, 16 coupling layers
with 256 hidden neurons, and two residual blocks. This network’s
forward/inverse maps and PDFs are discretized at 1k resolution
which we found to be su�cient even for large environment maps.

Training. We train using the AdamW optimizer [Loshchilov and
Hutter 2019] with a learning rate [ = 0.001 and hyperparameters
V = (0.9, 0.999). Every training batch contains 256k samples: 1024
samples G ∼ ?∗

X
( · | c) for each of 256 conditions c. We train for 10k

iterations on an NVIDIA A100 GPU; our most costly training with
neural materials converges within 30 minutes, while the cosine-
weighted and microfacet applications both take 20 minutes to train
on average. The one-time pre-training of the tail warp is achieved
in under 25 minutes.

For each condition c = (8o, n, 1), the outgoing direction 8o and
normal n are sampled over the sphere. Since 8o ·n < 0 cannot occur
for opaque surfaces, we �ip the normal accordingly. The material
descriptor 1 is roughness for the Trowbridge–Reitz model or a
NeuMIP feature vector. For Lambertian BRDFs, the condition is
simply c = n. To generate samples for the condition, we evaluate
the (unshadowed) integrand in Eq. (1) on a 512 × 1024 lat-long grid
and tabulate the resulting luminance values into a CDF.
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ReferenceReference MISMISOurs / NFOurs / NF Ours / BakedOurs / Baked

MSE / TimeMSE / Time 0.68 / 14 ms0.68 / 14 ms0.21 / 47 ms0.21 / 47 ms 0.25 / 18 ms0.25 / 18 ms

BBAA

N
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B
a
k
e
d

Intermediate Final Intermediate Final

Fig. 6. Two intermediate distributions (at scene points A & B) learned by
our head-warp NF model (top plots) and their low-resolution bakes (bo�om
plots) used for fast inference on the Dioramascene. Our baked scheme
roughly matches the run time of the MIS baseline and achieves a 2.4× MSE
reduction over it, with minimal noise increase over the slower NF model.
Note that most of the remaining noise for our method comes from visibility.

Evaluation. We evaluate the performance of our model by mea-
suring the mean square error (MSE) against several baselines at
equal rendering time and equal sample count. We found MSE to be
less sensitive to outliers than relative MSE in darker regions, which
are more omnipresent in direct illumination renderings.

4.1 Cosine-weighted emi�er sampling

We �rst demonstrate the bene�t of our method to the case of emitter
sampling. The popular hierarchical and row-column techniques do
not account for surface orientation and generate zero-contribution
directions below the local surface horizon, which is suboptimal.
Our method can sample the upper hemisphere proportionally to
the product of unshadowed radiance and cosine foreshortening by
conditioning our model on the surface normal in global space.

Lightweight, baked head warp. Given the low dimensionality of
this problem, we opt for a lighter head-warp architecture without
the conditional encoder, directly feeding the normal to the �ow
network. We also reduce the number of spline bins to 4 and use a
hierarchical tail warp as we empirically found that smoothness in
the tail warp is not necessary to accurately learn this distribution.
This model reduction makes our approach practical, as optimization
and tail-warp baking can both be done in under �ve minutes.

Even with these architectural changes, inference with our neural
head warp still incurs a small performance overhead on scenes with
simple geometry and materials. The use of MIS with BRDF sampling
further exacerbates this problem as our network needs to run twice:
once in each direction to compute the MIS weights. To alleviate this
issue, we adopt a similar strategy as Xu et al. [2023] and bake our
model into small histograms for fast sampling and PDF evaluation.
A key observation here is that we only need to bake the simple
intermediate distribution (Fig. 3) for a set of normal directions. This

ReferenceReference Ours / BakedOurs / Baked

RISRIS MISMIS

MSEMSE 0.110  (4 spp)0.110  (4 spp)

0.148  (4 spp)0.148  (4 spp) 0.224 (4 spp)0.224 (4 spp)

Fig. 7. Dishware scene (equal time). Our compact baked model for cosine-
weighted emi�er sampling achieves high performance and low variance.

a�ords the use of a very low resolution and thus memory footprint.
We compute 16 × 32 histograms with 8 × 8 resolution each (total of
132KB on disk), to achieve a substantial inference speed-up at only
slightly increased variance. We label this variant as Ours / Baked.

Results. Figure 1 showcases our cosine-weighted emitter model
applied to the Templescene. Here, our method can well capture
the variations in surface orientations, reducing the variance by
2.2× over MIS across the entire image. Our fast histogram variant
achieves equal-time performance at equal sample count. In Fig. 6,
we visualize intermediate densities of the native NF model and its
baked counterpart at two conditions (i.e., surface points). Even at
very low resolution, our histograms can yield faithful �nal product
distributions at a fraction of the inference cost. In Fig. 7, we show
additional results and compare against MIS and streaming RIS (4
candidates) at equal time, demonstrating once again superior quality
over these baselines.

4.2 Microfacet materials

As a second application, we �t the product of a distant emitter with a
microfacet-based BRDFwith a Trowbridge–Reitz (GGX) distribution.
The problem is now higher-dimensional as our model has to learn
the complex 5D coupling dynamics between surface normal, view
direction, and roughness—the conditions to our model.

Results. To assess how our model adapts to directional and scaling
changes in the resulting product lobes, we train two variants: one
with �xed roughness A = 0.4 and another with uniformly sampled
roughness A ∈ [0.2, 0.8]. We benchmark on a scene with intricate
geometry to challenge our model under a wide variety of conditions.
To test di�erent roughness values, we apply a texture on thematerial
roughness. We compare against classical MIS and streaming RIS
[Bitterli et al. 2020] with 4 candidates as they are the most practical
existing strategies in this scenario.
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RISRIS

Ref.Ref.

OursOurs

MISMIS

Ref.Ref.

Ours / MISOurs / MIS

MISMIS

ReferenceReference

MSEMSE

MISMIS RISRIS

Fixed roughness / Equal render time (1.0 s) Varying roughness / Equal sample count (2 spp)

RISRIS

1.245  (4 spp)1.245  (4 spp) 0.934  (4 spp)0.934  (4 spp) 0.542  (3 spp)0.542  (3 spp) MSEMSE 0.3930.393 0.2070.207 0.1460.146

OursOurs ReferenceReference MISMIS RISRIS Ours / MISOurs / MIS

Fig. 8. Droid scene. We apply our method to product importance sampling of microfacet BRDF and distant emi�er. Le� : When trained on a fixed roughness
value, our model easily outperforms MIS and streaming RIS (4 candidates) at equal rendering time. Right : When roughness is an additional condition to our
network, our head warp a�ains a worse fit, but an MIS combination with BRDF sampling achieves variance reduction at equal sample count.

Figure 8 shows the results. At �xed roughness, our model achieves
excellent variance reduction at equal time. When roughness is also
part of the condition, it still outperforms MIS at equal time but not
RIS. We report MSE at equal sample count where we MIS-combine
our model with BRDF sampling to further reduce noise. It is worth
noting that we keep the capacity of our model to a minimum for
performance reasons; as such it may not produce latent vectors /
that are expressive enough to fully capture the input dependencies.
Given the small size of our model, we posit that distilling it into
lightweight, �xed-roughness sub-models [Hinton et al. 2015] could
alleviate this problem; we leave such investigation as future work.

4.3 Neural materials

The application of our sampling framework to products of illumina-
tion and neural materials is straightforward. Similarly to NeuSample
[Xu et al. 2023], we use the NeuMIP [Kuznetsov et al. 2021] feature
vector at the shading DE-coordinates as the material descriptor 1.

Results. We compare our method against several baseline sam-
pling techniques: cosine-weighted, emitter, and the �ow-based vari-
ant of NeuSample which we implemented to the best of our ability.
NeuSample employs a projected-disk parameterization, whereas
our approach is de�ned in the equirectangular domain and does not
su�er from out-of-domain samples—all points in our unit square
map to a valid direction.

We benchmark our approach on three fabric materials with di�er-
ent glossiness. In Fig. 9, we render a high-roughness striped welt bed
sheet and compare against emitter sampling, cosine sampling and
NeuSample at equal rendering time. While the neural BRDF exhibits
seemingly complex patterns, importance sampling it using NeuSam-
ple brings an only small improvement over cosine sampling. Emitter
sampling performs favorably to these two but does not account for
the full product. Our method performs best as it is informed about
both the NeuMIP feature vector and the emitter. Figure 10 shows
lower-roughness neural materials under directional lighting which
prevents NeuSample and its MIS combination with emitter sampling
from improving over the baselines; our product-sampling method
remains the best by a signi�cant margin.

4.4 Shadow-catcher compositing

Finally we show how our model can be employed for compositing
virtual objects into photographs using the shadow catcher method.
Compositing typically requires two shading passes: one including
both the inserted object and the shadow catcher, and one of just
the shadow catcher without the object [Debevec 1998]. We take
the ratio of the luminance on the catcher with/without the object
and use it as the visibility mask when alpha-composing the object
and its shadow into the photograph. This desired transparency
(assuming a Lambertian shadow catcher) can be written as a ratio
of hemispherical integrals:

g =

∫

Ω
+ (x,8)!(8)⟨n,8⟩ d8
∫

Ω
!(8)⟨n,8⟩ d8

, (13)

where !(8) is the direct luminance (grayscale radiance) from the
environment emitter and ⟨n,8⟩ is the clamped cosine term. Com-
puting this ratio requires either two rendering passes or signi�cant
re-engineering of the renderer to be able to produce these two inte-
gral estimates at once.

We note that g is equivalent to the expectation of visibility+ (x,8)

with respect to a PDF proportional to the product !(8)⟨n,8⟩ (the
denominator in Eq. (13) is the PDF’s normalization). This density
is precisely what our cosine product sampler learns. We can thus
estimate the opacity mask in a single pass using the simple estimator

⟨g⟩# =

1

#

#
∑

8=1

+ (x,88 ), 88 ∼ ?X (8 | x;) ). (14)

The �nal composition then amounts to multiplying the visibility
mask to the image and adding the masked object.

Results. We demonstrate this application by extracting a recti�ed
image from an environment map to ensure almost exact lighting
and use fSpy [Gantelius 2019] to roughly match the camera settings
and model the shadow receiver plane. We show the resulting compo-
sition in Fig. 11. Thanks to our ratio estimator, we get photorealistic
object insertion in one rendering pass.
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ReferenceReference EmitterEmitter CosineCosine NeuSampleNeuSample OursOurs ReferenceReference Emitter  Emitter  CosineCosine NeuSampleNeuSample OursOurs

MSEMSE 0.400  (6 spp)0.400  (6 spp) 1.916  (6 spp)1.916  (6 spp) 1.333  (4 spp)1.333  (4 spp) 0.269  (4 spp)0.269  (4 spp)

Fig. 9. Bedroom scene (equal time). For high-roughness neural materials like this striped welt fabric, cosine sampling and NeuSample [Xu et al. 2023] both
produce high-variance results as they are oblivious to the non-uniform incident radiance. Emi�er sampling does be�er but still samples only one factor in the
product. Our model accounts for the product of material and lighting and performs best.

MSEMSEReferenceReference

EmitterEmitter

NeuSampleNeuSample

NeuSample MISNeuSample MIS

0.251  (6 spp)0.251  (6 spp)

1.544  (4 spp)1.544  (4 spp)

1.792  (2 spp)1.792  (2 spp)

OursOurs 0.125  (4 spp)0.125  (4 spp)

MSEMSEReferenceReference

EmitterEmitter

NeuSampleNeuSample

0.502  (6 spp)0.502  (6 spp)

2.619  (4 spp)2.619  (4 spp)

0.924  (2 spp)0.924  (2 spp)

OursOurs 0.363  (4 spp)0.363  (4 spp)

Victorian wall fabric Goat leather quilt

NeuSample MISNeuSample MIS

Fig. 10. Cloth scene (equal time). NeuSample yields excessive noise with lower-roughness neural materials illuminated non-uniformly, even when MIS-
combined with emi�er sampling. Emi�er sampling alone does be�er but remains inferior to our product approach which generates clear results at equal time.

5 DISCUSSION

In Fig. 12 we plot the intermediate and �nal densities learned by our
model on environment maps and materials used in our experiments.
We compare to naively �tting the full product with a neural �ow of
the same capacity as our head warp. Unlike the naive �ts, our �nal
�ts align well with their corresponding target densities, showcasing
the bene�t of separately handling detail and conditioning via warp
composition.

Ablation study. To demonstrate the bene�ts of the individual
components of our model, we conduct an ablation study and report
results in Table 1. Unsurprisingly, naively �tting a �ow to a product
distribution performs much worse than our two compositional vari-
ants. Interestingly, the impact of using the smoother �ow-based tail
warp over a hierarchical one grows with BRDF complexity. Our con-
ditional encoder and entropic regularization scheme further reduce
error. We do not ablate the addition of an encoder for the cosine
scheme as it is not part of the model.

Limitations. Our approach requires training per material model,
with duration depending on conditioning dimension and target-
distribution complexity. It provides bene�t only when the training
e�ort can be amortized in the subsequent rendering. To that end,
the total preprocessing time can be cut in half when opting for

a standard (e.g., hierarchical) emitter-sampling technique in lieu
of optimizing a smooth tail warp. Our cosine-weighted model is
particularly practical as it is optimized once per environment map,
baked compactly, and used as an e�cient drop-in replacement for
traditional illumination sampling in any scene (also with MIS).
Our head warp may perform poorly when the product distribu-

tion is strongly dominated by the BRDF term (e.g., with very low
roughness). We hypothesize that exposing an analytic parameter-
ized BRDF warp to our model may mitigate this issue. Similarly, sun
environment maps are not well supported: the tail warp collapses
into a single point, which in turn causes numerical issues in the
head-warp optimization. MIS can be applied in these scenarios but
at the cost of an extra network pass for PDF evaluation. Future
hardware acceleration might ease the implementation of fully fused
�ow kernels to better amortize such additional evaluations.

Future work. Our model is most e�ective with non-trivial scene
complexity, i.e., when sampling is not the principal bottleneck in
rendering. Applying our technique to more complex BRDFs, e.g., of
layered materials [Guo et al. 2018], is thus a promising future avenue.
Moreover, our current neural-material approach assumes the exis-
tence of a pre-trained (NeuMIP) material model; joint end-to-end
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Real photographReal photograph Scene matchScene match

Visibility maskCompositionComposition

Shadow catcher

Object

Fig. 11. Our cosine product sampler can be readily applied to shadow-
catcher insertion of virtual objects into real photographs, in one render pass.

Table 1. Ablation of the main components of our model on three scenes,
reporting rendering MSE. As expected, our full model performs best.

Cosine Microfacet Neural material

Temple (Fig. 1) Droid (Fig. 8) Bedroom (Fig. 9)

Naive neural-�ow �t 0.715 1.411 1.320
Hierarchical tail warp 0.437 0.940 0.896
Neural-�ow tail warp 0.406 0.901 0.739
+ Conditional encoder — 0.580 0.323
+ Entropic regularization 0.401 0.542 0.269

training of material and sampling models would be preferable. Mak-
ing our model MIS-aware could also help mitigate the drawbacks
of poor conditional �ts for near-unimodal products. For instance,
using our model as the free strategy in MIS compensation [Karlík
et al. 2019] could help further reduce variance. Finally, an applica-
tion to non-axis-aligned portal-masked emitter sampling [Bitterli
et al. 2015] seems within reach, where the �ow network could be
conditioned on a spatial feature grid to encode portal visibility.

6 CONCLUSION

E�cient product sampling of illumination and re�ectance has been
a long-standing problem in rendering. We introduced a novel com-
positional scheme that decouples the handling of distribution shape
complexity and conditioning, to a�ord a compact model capable
of achieving both tight �ts to target product distributions and fast
inference. We demonstrated the versatility of our approach through
several practical applications, showing signi�cant variance reduc-
tion on scenes of varying complexity. Our method excels when the
shape of the product distribution does not degenerate into a singular
island of density (e.g., very low roughness BRDFs or sky sun HDRIs).
We hope our compositional approach stimulates renewed interest in
�ow-based models for light-transport simulation, which have been
deemed impractical due to their high computational cost.
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Fig. 12. For six environment maps, we plot fits of the product with one of three BRDFs used in our experiments. For each of the six configurations, we
randomly sample two conditions and show the target product density and the intermediate and final densities learned by our model. For comparison
we also visualize a naive neural-flow fit (i.e., without a tail warp). We mark the conditional (global) surface normal with a red cross and the reflected view
direction with a yellow cross to localize the lobe in lat-long coordinates. All our learned final distributions align well with the target product, showcasing the
benefit of warp composition for product importance sampling.
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