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Abstract

As part of the ICLR 2018 Reproducibility Challenge, we reproduce the results
from Learning to Hamiltonian Monte Carlo (L2HMC; Lévy et al., 2018), a
general-purpose method to train Markov chain Monte Carlo (MCMC) kernels,
parameterized by deep neural networks, that converge and mix quickly to their
target distribution. We reproduce the core part of the work, namely automatic
training of MCMC samplers applied to simple yet challenging distributions where
Hamiltonian Monte Carlo (HMC) tends to fail. We show that most experiments
conducted in the paper are correct and further propose an additional test to better un-
derstand subtle design decisions made by the authors. The code for all experiments
is available online on Github.1

1 Paper Summary

1.1 Motivation

Efficient sampling from high-dimensional distributions is among the long-standing goals of Bayesian
inference. Exact posterior inference being typically intractable in these cases, one must resort to
approximate statistical inference models. One family of such algorithms, Markov chain Monte Carlo
(MCMC), operates by drawing a series of correlated samples that will converge in distribution to the
target equilibrium distribution � . MCMC methods are asymptotically unbiased and applicable even
when it is impossible to sample directly from � , making them a powerful and versatile toolbox for
statisticians and machine learners alike.

This elegant framework is not without problems, however. For complex distributions with many
parameters, simple variants of MCMC such as Random Walk Metropolis (Metropolis et al., 1953)
and Gibbs sampling (Geman and Geman, 1984) usually fail to converge (burn-in) in a reasonable
amount of time, thus resulting in poor exploration of the typical set and highly biased estimators.
Even if the chain has burned-in, it is also difficult to determine if it has produced uncorrelated samples
(mix-in). This is mainly due to the undesirable tendency of these models to explore parameter space
via inefficient random walks.

Hamiltonian Monte Carlo (HMC; Duane et al., 1987, Neal et al., 2011) is a MCMC algorithm that
is able to suppress this random walk problem and sensitivity to correlated samples by simulating
Hamiltonian dynamics in an augmented space. By transforming the density function to a potential
energy function and introducing auxiliary momentum variables v, HMC lifts the target distribution
onto a joint probability distribution on phase space .x; v/, where x is the original variable of interest
seen as position. A new state is then obtained by solving the equations of motion for a fixed period of
time using a volume-preserving integrator such as Leapfrog. This is better visualized in Figure 1.
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Figure 1: Visualizing HMC for a 1D Gaussian (Example from Betancourt, 2017). Each Hamiltonian
Markov transition lifts the initial state onto a random level set of the Hamiltonian, which can then be
explored with a Hamiltonian trajectory before projecting back down to the target parameter space.
Pictorially, each trajectory corresponds to a frictionless particle navigating a quadratic bowl after a
gentle push in either direction (˙1).

The addition of random (usually normally distributed) momenta favors long distance jumps in state
space with a single Metropolis–Hastings (MH) step. Nonetheless, HMC can still perform poorly in a
number of cases such as multi-modal distributions, ill-conditioned energy landscapes, and rapidly
changing gradients. HMC also requires the gradient of the log-posterior to be available, something
that often necessitates computationally-expensive tools such as automatic differentiation.

Motivated by recent work on probabilistic models parameterized by deep nets, Learning to Hamil-
tonian Monte Carlo (L2HMC; Lévy et al., 2018) presents a learned inference architecture that
generalizes HMC. The proposed algorithm learns a MCMC kernel by training a modified Leapfrog
integrator parameterized by neural nets. The parameters are trained to encourage fast mixing and
convergence to its target distribution. While this transition kernel is no longer symplectic, it retains
strong theoretical guarantees with a tractable MH accept/reject step, making L2HMC potentially
capable of sampling very challenging distributions.

1.2 Proposed approach

Update rules. Hamiltonian Monte Carlo has only two parameters: the number of jumps L and the
jump size �. One obvious way to generalize this method would be to use neural networks to learn
both of these parameters. In ravine-like regimes (e.g., a strongly correlated Gaussian), it could learn
to use smaller � and larger L in an adaptive fashion. In fact, the No-U Turn Sampler (NUTS; Homan
and Gelman, 2014) is an adaptive method that explores this idea. L2HMC generalizes even further by
instead modifying the Leapfrog integration steps (instead of their parameters only).

The suggested algorithm transforms the original Leapfrog equations
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These equations require a bit of explaining. First, each update is generalized by scaling the previous
value (v or x), and also scaling and translating the updating value (@xU.x/ or x). If we take the first
equation, the original paper provides a short justification for this choice of update rule by saying that
scaling the momentum can enable acceleration in low-density zones, facilitating mixing between
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modes. It also mentions that scaling the gradient of the energy may allow better conditioning of the
energy landscape (e.g., by learning a diagonal inertia tensor, as we will see in one of the experiments).
No reasons are given however regarding the use of the translation factor (was it better empirically?).
As for the x update rules, most likely, the authors decided to use a similar looking update for aesthetic
and uniformity reasons.

Second, these scaling and translating factors are the outputs of neural networks S , Q, and T , which
take as input a subset � of the full state, in order to keep the Jacobian of the translation efficiently
computable—this is because its determinant appears in the acceptance probability of Metropolis–
Hastings. These subsets are defined as
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Third, keeping the Jacobian of the x update efficiently computable (independant of x) requires
breaking up the update into two parts, following Real-valued Non-Volume Preserving transformations
(RealNVP; Dinh et al., 2016). The mask mt is drawn uniformly from the set of binary vectors half
of whose entries are 0 and the other half being 1. We also wrote Nmt D 1�mt and xmt D xˇmt for
convenience of notation.

Metropolis–Hastings step. These steps now form our operator that is used for the proposition of
each MH step. For MH to be well-defined however, this deterministic operator must be invertible
and have a tractable Jacobian, i.e. we can compute its determinant. To make this operator invertible,
the authors augment the state-space .x; v/ into .x; v; d/ where d 2 f�1; 1g is drawn with equal
probability, and represents the direction of the updates. Equations (2) above represent the forward
direction (d D 1). For the backward direction, we simply have to reverse the order of the updates
(first take the mapping v00 ! v0, then x00 ! x0, followed by x0 ! x and finally v0 ! v). These
are explicitly given in the appendix of the original paper, alongside the derivation to compute the
Jacobian for each update. For example, the Jacobian of the first update v ! v0 is exp

�
�
2
Sv.�1/

�
.

If we then define our Leapfrog operator to perform M steps of the above updates: L� .x; v; d/ D
.x00M ; v

00
M ; d /, and our flip operator as F.x; v; d/ D .x; v;�d/, we get our final invertible operator

FL� with tractable Jacobian J. Using this operator, and defining � D .x; v; d/, the acceptance
probability for the Metropolis–Hastings step is then found to be

A.FL�� j �/ D min
�
1;
�.FL��/
�.�/

jJ.FL� /j
�
: (4)

Network architecture. All that is left is to define the different neural networks Si , Qi , and Ti (for
i 2 fx; vg) and craft a loss to train them. The architecture for x and v are the same so we will
follow the paper and define Sv , Qv , and Tv . First, the time step t is encoded as an harmonic signal
�.t/ D .cos.2�t=M/; sin.2�t=M// for reasons that are left unexplained. Then, using � to denote
ReLU, the 2-layer neural net is defined for nh hidden units per layer as:

• h1 D �.W1x CW2@xU.x/CW3�.t/C b/ 2 Rnh

• h2 D �.W4hC b4/ 2 Rnh

• Sv D �s tanh.Wsh2 C bs/I Qv D �q tanh.Wqh2 C bq/; Tv D Wth2 C bt

where both �s and �q are learned parameters. The number of hidden units depends on the dimension
of the distribution we are trying to sample from. The networks (see Figure 2) are trained with Adam
(Kingma and Ba, 2014) and a learning rate of ˛ D 10�3 for 5000 iterations with a batch size of 200.

Loss function and training. We must finally define some criterion to train the parameters � of
these networks. We want to learn MCMC kernels that converge fast and mix-in easily, both across
energy levels and between modes. L2HMC’s loss however is specifically targeted towards reducing
burn-in and mixing time. The authors start by using a theorem from Pasarica et al. (2003) which
shows that maximizing expected squared jumped distance (ESJD) is equivalent to minimizing lag-
one autocorrelation. We know that the sum of the autocorrelation coefficients from �1 to1 is an
estimate of the mixing time (Kipnis and Varadhan, 1986), so if we assume that lag-one autocorrelation
trumps the other values of the sum, we can use maximizing ESJD as a proxy for minimizing mixing
time. To be more formal, for �, � 0 in the extended state space, we define

ı.�; � 0/ D ı
�
.x; v; d/; .x0; v0; d 0/

�
D kx � x0k22: (5)
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Figure 2: Overview of network architecture for training Sv , Qv , and Tv . Time is initially mapped
onto the unit circle to form a 3-tuple input � D .x; @xU.x/; �/ with position and gradient information.
The three networks are trained in parallel to speed up the computations. These form the basis of the
new Leapfrog integrator FL� .

ESJD is thus E���.�/Œı.FL��; �/A.FL�� j �/�. The original work adds an extra reciprocal penalty
for not moving enough. This new loss optimizes both for typical and worst case behaviour:
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where � is a scale parameter. In order to encourage both fast mixing time and burn-in time, the
authors train their sampler by minimizing this loss over both the target distribution (mixing time)
and initialization distribution (burn-in time). Formally, given a distribution �0 over X, we define
q.�/ D �0.x/N .vI 0; I /p.d/, and minimize

L.�/ , E�.�/
�
`�.�;FL��; A.FL�� j �/

�
�
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C �b Eq.�/
�
`�.�;FL��; A.FL�� j �//

�
’

Burn-in regularization

: (7)

Note that we can control how much we penalize long burn-in time using a user-defined scalar �b .

2 Experiments

2.1 Motivation for the experiments

The empirical evaluation of L2HMC is performed on a small collection of simple energy functions
exhibiting common pathological behaviours in MCMC. Recall that L2HMC aims to learn a transition
kernel with the following list of desiderata: fast mixing, fast burn-in, mixing across energy levels,
and mixing between modes. To benchmark their algorithm, the authors train their model on four toy
distributions that are known to cause problems even for a well-tuned HMC.

Ill-conditioned Gaussian (ICG): 50D Gaussian distribution with diagonal covariance matrix. The
point of this experiment is to show that L2HMC can learn a diagonal inertia tensor. We follow the
original paper in using diagonal values spaced log-linearly between 102 and 10�2.

Strongly Correlated Gaussian (SCG): A diagonal 2D Gaussian with variances Œ102; 10�2� rotated
by �

4
. The authors claim that this problem shows that, although their parametric sampler only applies

element-wise transformations, it can adapt to structure which is not axis-aligned. We fail to see how
this is different from the ICG experiment (albeit being in two dimensions only).

Gaussian Mixture Model (GMM): Mixture of two isotropic Gaussians with �2 D 0:1 and centroids
separated by distance 4. The means are thus about 12 standard deviations apart, making it almost
impossible for HMC to mix between modes.

Rough Well (RW): Essentially a wavy Gaussian. Formally, for a given � > 0;U.x/ D 1
2
x>x C

�
P
i cos.xi=�/. For small � the energy itself is altered negligibly, but its gradient is perturbed by a

high frequency noise oscillating between �1 and 1. In the original experiment, the authors choose
� D 10�2 and we follow this convention.
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To this set of four experiments from the original paper, we add a fifth of our choosing. Because
L2HMC claims that it is an extension of HMC in that if the network sets S D Q D T D 0, we
recover vanilla HMC, we wish to test whether the network will actually be able to learn to not do
anything with a simple example:

Low Variance Gaussian (LVG): A simple 1D Gaussian distribution with variance 1
25

.

All experiments use nh D 10 neurons per layer, except the 50D Gaussian where it is suggested to
use nh D 100. A step size of � D 0:1 and M D 10 Leapfrog steps were used for all experiments, as
recommended by the authors.

2.2 Reproducing the main results

We confidently reproduced all of the four experiments from the original paper except for the ill-
conditioned Gaussian, as can be seen by comparing Figure 3 and Table 1. To produce these plots
after training, we generated 200 Markov chains for 2000 steps and computed the auto-correlation.

Figure 3: Auto-correlation vs. gradient evaluations of energy U.x/. All tasks but ICG agree with the
original paper.

Distribution ESS-L2HMC ESS-HMC Ratio
ICG 1:80 � 10�1 2:49 � 10�4 722
RW 1:92 � 10�1 4:16 � 10�2 4.6
SCG 3:29 � 10�1 6:09 � 10�3 53
GMM 1:77 � 10�1 2:63 � 10�4 674.6

Table 1: Effective sample size (ESS) per Metropolis–Hastings step.

3 Discussion

3.1 Analysis and comparison with original work

The strongly correlated Gaussian and the Rough well experiments align with the results obtained in
the original paper. We report a ratio of 53 for SCG, while the authors reported 36.6. Similarly, the
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Figure 4: Comparing L2HMC and HMC samples on a different mixtures of Gaussians. L2HMC fails
to explore the two modes when the variances are different, contradicting the claim made in (Lévy
et al., 2018).

Figure 5: Comparing L2HMC and HMC samples on our additional test, the low variance 1D
Gaussian. The former takes longer to burn-in but both explore the typical set properly.

RW has a ratio of 4.6, compared to 5.4. Since both values are in the same ballpark, SCG and RW
are both reproducible.

For the ICG, we can see that using, as the authors did, diagonal values spaced log-linearly between
102 and 10�2, we are not able to make the vanilla HMC auto-correlation values shrink to zero.
However, we see an oscillatory motion in the L2HMC graph which is not observed in the original
paper. Its auto-correlation value does shrink down to zero but it does so oscillating between positive
and negative values. This can be explained by the model encouraging long jumps and hence forcing
values to jump back and forth between two sides of a hyperplane centered at zero (imagine samples
looking like a bipartite graph). This results in having auto-correlation values jumping back and
forth between negative and positive values. Since we were unable to make the vanilla HMC models
converge, the ESS ratio in Table 1 is far too high. In order to get the same results they got, we need
to space the diagonal variance values log-linearly between 102 and 10�1, and to reduce the vanilla
HMC � step-size to lower values. We managed to get � D 0:1 to converge, but did not try other
values. Therefore, as far as our experiments show, ICG is not reproducible.

The other claim of the authors that we were not able to reproduce is that of the non-uniform mixture
of Gaussians (MoG with very different covariance matrices). As can be seen in Figure 2.2, with
equivariance Gaussians, L2HMC mixes well across modes, something HMC fails miserably at. For
the non-uniform Gaussian case however, the authors compare their L2HMC to A-NICE-MC (Song
et al., 2017), writing that because A-NICE-MC restricts itself to a volume-preserving operator, it is
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unable to mix well between the two modes. This narrative suggests that only a fraction of the volume
of the large mode can be mapped to the small one, making the L2HMC sampler outperform it. This
is a nice claim, but we did not manage to verify it through our experiments. As such, we conclude
that GMM is partially reproducible.

The last experiment we need to discuss is that of the 1D Gaussian that we added (LVG). We can
see in Figure 5 that qualitatively speaking, HMC seems to outperform L2HMC. The samples from
L2HMC have a high lag-one auto-correlation, as can be seen from them jumping back and forth. We
see this as an impediment to the model. Indeed, in simple cases like this where it should technically
learn to mimic HMC, it seems unable to do so, contrary to the theoretical claims of the authors.

3.2 Criticism

Construction of FL� . If we look back at Equations (2), we note that nowhere in the paper is the
reason for keeping the � parameter from HMC given: why is � still required if we are learning scaling
parameters? Couldn’t the network learn these by itself? Furthermore, if we accept � as necessary,
then in the first and fourth updates why are the two scaling factors not multiplied by the same scalar:
Sv is multiplied by �

2
whereas Qv is multiplied by �. Additionally, the authors do not motivate the

use of the exponential function to multiply the scaling factors. This could have been added as the last
layer of the network (e.g. just like a softmax), making the notation more readable.

Temperature annealing. One important detail missing from the paper is how they managed to
achieve good results on the Gaussian mixture model example. If tried as is, the chain in the training
phase will fail to find the second mode (as can be seen from the Vanilla HMC sample in Figure 2.2),
and hence the network will not be able to learn the jump between the modes. In order for the network
to achieve this hidden mode exploration, the chain needs to find the second mode in the first place.
This, we achieved by adding temperature annealing to the training phase. By starting with a high
temperature T D 15, the chain is able to move between both modes. Once it has learned this, we
can lower the temperature back to T D 1, hence recovering the initial distribution while keeping the
jump in the network’s “memory”. This precious detail was missing from the original paper and was
obtained by communicating with Daniel Lévy directly.

Burn-in regularization. We are puzzled by the justification for the loss function. Why does the
second term of the loss encourage fast burn-in? ESJD is only equivalent to fast mixing, so it seems like
the second term encourages fast mixing starting with the initial distribution, which is not necessarily
equivalent to fast burn-in time.

Auto-correlation plot for GMM. Another mistake the authors make can be found in the auto-
correlation graph (3) for this Gaussian Mixture Model. They find a constant auto-correlation close
to 1 for the vanilla HMC models but this is only because of an error in their code. The base code
forgets to subtract the mean from the samples, and because the HMC model does not mix between
the two modes, all of the samples have the same sign for x. Hence of course they seem correlated if
we forget to subtract the mean. We kept the code the same to show their mistake in this graph.

Additional minor typos. One small detail that should be fixed in the paper is that of the definition
of their neural network in the appendix. Qv , Sv , and Tv have x, @xU , and � as input (see our Figure
2), and not x, v and � as the authors write.

4 Conclusion

In summary, our top 3 criticisms regarding L2HMC are

1. Lack of transparency regarding how and why temperature annealing should be used for better
mixing between modes;

2. Lack of motivation regarding the design choices for the modified Leapfrog integrator;

3. Lack of details regarding the loss function, especially the term related to burn-in regularization.

We need to mention that we did not attempt to reproduce the VAE part of the paper. This secondary
experiment is merely an application of L2HMC to latent-variable generative models and did not offer,
in our eyes, any theoretical insights on the method that was worth the time.
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To conclude, we do think that the ideas presented in Lévy et al. (2018) are novel and promising.
Applying deep learning techniques to Bayesian inference is definitely an avenue that will continue
to flourish in the near future. We remain doubtful, however, as to how L2HMC could scale to more
complex analytical distributions given that first-order gradient computations can incur a nonneglible
cost to the training procedure.
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