
ASSIGNMENT 4 — PRACTICAL PART
GENERATIVE MODELS (GANS)

Samuel Laferrière�& Joey Litalien�

IFT6135 Representation Learning, Winter 2018
Université de Montréal
Prof. Aaron Courville
fsamuel.laferriere.cyr,joey.litalieng@umontreal.ca

1 OVERVIEW

For this assignment, we chose to implement in PyTorch a Generative Adversarial Network (GAN)
as first introduced by Goodfellow et al. (2014). The variant we used for comparison is a Wasserstein
GAN (WGAN) from Arjovsky et al. (2017). The class DCGAN implements a Deep Convolutional GAN
and contains both a Discriminator D and Generator G. Both entities can be trained independently
using the methods DCGAN.train *, meaning that we can customize the number of times we update
each model. These training routines implement three types of loss functions: the original minmax
loss, the Wasserstein loss and the least squares lost from Mao et al. (2016). The last GAN type
will not be evaluated in this assignment, but generated images from our LSGAN are available in the
Appendix.

Every hyperparameter related to training (e.g. learning rate and momentum) is set in CelebA, a
wrapper class for the generative task at hand. To load a pre-trained generative model and sample
images from its distribution, simply instantiate DCGAN, call DCGAN.load_model(fname) with the saved
PyTorch weights, and run DCGAN.generate_img(n).

2 ARCHITECTURE

2.1 TRAINING THE NETWORKS

We took inspiration from the DCGAN architecture from Radford et al. (2015) to build our two
GANs. The architectures for the discriminator and generator are given in the tables below and are
used on both our vanilla DCGAN and our WGAN. The middle columns are kernel size .k/, stride
.s/ and zero-padding .p/, respectively.

In Out Module k s p Normalization Activation
100 512 Linear + Reshape BatchNorm1D ReLU
512 256 ConvTranspose2D 4 2 1 BatchNorm2D ReLU
128 64 ConvTranspose2D 4 2 1 BatchNorm2D ReLU
64 3 ConvTranspose2D 4 2 1 None Tanh

Table 1. DCGAN Generator architecture.

As suggested in the paper, we did not apply batchnorm to G’s output layer and D’s input layer to
avoid sample oscillation and model instability. The latent variable is first project to a 512� 4� 4 D
8192-dimensional vector using a dense layer and then reshaped to a volume of 512 � 4 � 4 for the
first fractionally-strided convolution. We used a kernel size of 4 instead of 5 and removed all biases
in the generator network to speed up the computations.

We further detail our choice of hyperparameters as follows.

�Student ID P0988904
�Student ID P1195712



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

In Out Module k s p Normalization Activation
3 64 Conv2D 4 2 1 None LeakyReLU

64 128 Conv2D 4 2 1 BatchNorm2D LeakyReLU
128 256 Conv2D 4 2 1 BatchNorm2D LeakyReLU
256 512 Conv2D 4 2 1 BatchNorm2D LeakyReLU
512 1 Conv2D 4 1 0 None None

Table 2. DCGAN Discriminator architecture

Hyperparameter Symbol DCGAN WGAN
Learning rate ˛ 2 � 10�4 5 � 10�5

Momentum ˇ; ˇ2 0.5, 0.999 None
SGD Optimizers — Adam RMSProp
D=G updates ratio ncritic 1 5

Table 3. Training hyperparameters for DCGAN and WGAN

These parameters are the ones suggested by the original authors and tested on the LSUN dataset.
We experimented with different values (e.g. Adam for WGAN) but GANs being incredibly hard
to train, we settled for these values. Theoretically, the discriminator in a WGAN should be fully
converged to get the best estimate of the Wasserstein distance but in practice this does not work so
well. Hence, if Giter is the number of times G has been updated so far in the training and ncritic is the
number of times D is updated before G is updated once, we started with ncritic D 20 for Giter < 50
(1000 minibatches) or whenever Giter C 1 .mod 500/ D 0. This number is reduced to 5 otherwise.
This is rather arbitrary but somewhat follows the heuristic described by Arjovsky himself on his
GitHub repo of the original WGAN.

The dataset contains 202 599 RGB images of size 3 � 64 � 64. These faces were first normalized
and fed into our networks in minibatches of size 64. To train these models, we provided Shell scripts
that accept a number of arguments for the optimizers, learning rate, CUDA switch, RNG seed (for
debugging), and much more. These are located in src/train. Below are the training times for our
models.

Model Training time Avg epoch time Avg batch time
Vanilla GAN 3 hrs 34 mins 4 mins 15 s 56 ms
WGAN 2 hrs 38 mins 3 mins 9 s 35 ms

Table 4. Training our vanilla GAN and Wassterstein GAN on an NVIDIA GTX 1080

Animations of the 50 epochs with fixed latent variables can be found in src/checkpoints under each
model’s video folder.

2.2 INCREASING THE FEATURE MAP SIZE

To illustrate the three upsampling schemes, we reuse a toy example from Odena et al. (2016). Here,
we used a stride of s D 1 (in white) and a constant kernel k D .a; b; c/ D

�
1
3
; 1

3
; 1

3

�
of size 3 (in

blue). The input vector x (in pink) is a discretized color gradient, i.e. x D .9; 7; 5; 3; 1/ˇ 10�115.
The upsampled vector y is obtained from the matrix C> and Ox.

Given an input vector, a fractionally-strided convolution first adds a stride inbetween elements, and
then performs a convolution (in blue). We represent this in Figure 1, noting that the kernel is flipped.
We also represent C> as a 4 � 3 sparse matrix, mapping from x1W3 to Ox2W5. Note the checkerboard
effect present in y due to kernel overlapping.

2 of 11

https://github.com/martinarjovsky/wassersteingan


IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

abc

x

Ox

y

C>

a c

b

b c

b

Figure 1. Fractionally-strided convolution

In the case of a nearest neighbor (NN) resize convolution, we first expand x by duplicating the
elements to obtain Ox and then perform the convolution. Doing the arithmetic gives us the matrix C>
depicted in Figure 2 below. We observe that the upsampled vector y is much smoother and is free of
any artifact other than at its extremes.

x

Ox

y

C>

aC b

a

c

b C c

aC b

a

c

b C c

Figure 2. Nearest-neighbor upsampling + Convolution

Finally, the bilinear resize convolution maps x to Ox by interpolating between the values. This intro-
duces 1

2
terms in the deconvolution matrix which needs to be 4 � 4 in this case. This is shown in

Figure 3.

3 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

x

Ox

y

C>

aC 1
2b

1
2a

1
2b C c

1
2aC b C

1
2c

aC 1
2b

1
2a

1
2b C c

1
2c

1
2aC b C

1
2c

1
2c

Figure 3. Bilinear upsampling + Convolution

3 QUALITATIVE EVALUATIONS

3.1 DCGAN VS. WGAN VISUAL COMPARISON

(a) Vanilla GAN

(b) WGAN

Figure 4. Comparing our vanilla GAN (top) with its Wasserstein counterpart (bottom). More images
can be found in the Appendix.

Against all odds, it seems like our GAN outperforms our WGAN. Even if the latter does not show
any sign of partial mode collapse as compared to the former (so more diverse, see Appendix), the
quality of the samples produced by the vanilla DCGAN are clearly superior. Our GAN’s outputs are
more crisp and less blurry. In particular, the Wasserstein GAN samples look more like oil paintings
and very few samples could be confused with an actual human face. It is unclear why this is the
case, as with anything related to GANs really.

To improve our models, the main direction would be to use bigger images (e.g. 3 � 128 � 128) and
experiment more with the heuristic used for setting ncritic in the contect of WGANs. In particular,
monitoring the loss more closely could ensure our generator converges. Another possibility would
be to use gradient penalty from Gulrajani et al. (2017) instead of weight clipping to enforce the
Lipschitz constraint. One final possibility would be to go deeper and add an extra layer in the

4 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

discriminator architecture so that the sequence goes 100 ! 1024 ! 512 ! � � � instead of 100 !
512! � � � .

3.2 LATENT SPACE EXPLORATION

To explore the face manifold in latent space, we iterated over all 102 dimensions of two given z’s and
changed the value to˙3�2 D ˙3 to amplify the signal. We selected the dimensions we thought gave
the most notable differences and plotted them in Figure 5. Some of the visual variations we observed
are open/close mouth, skin color, hair fringe, hair colour, cheek and jaw shape, background, and
gender changes. Interestingly, we also have a semblance of face rotation with the woman in the
Vanilla GAN (first and fourth from the right).

(a) Vanilla GAN

(b) WGAN

Figure 5. Changing a single dimension in latent space for different generative models. Original face
x D G.z/ is the left-most image.

Note that we had to handpick the samples for the WGAN given the poor quality of the model. It is
still interesting to see that the latent space exploration somewhat gives sensible results even when
the model’s generative performance is poor. One could try to experiment with higher dimensional
changes (e.g. moving many dimensions at once) as well.

3.3 SCREEN AND LATENT SPACE INTERPOLATION

Interpolating in screen space (Fig. 6) obviously gave very poor results as we simply interpolate
between pixels and completely disregard the underlying structure of the generator G. Only the first
and last images look like actual human faces; anything in the middle has ghosting artifacts since it
is just a blend of RGB channels.

Interpolating in latent space (Fig. 7), however, gives pleasant results. Indeed, any z0 seems to yield a
plausible celebrity face. This is because when we interpolate the latent variables, we “walk” on the
face manifold of G and so any value should somewhat give a realistic face.

To better visualize the interpolation process, we created looping GIFs (and MP4 videos to
avoid compression artifacts) over 50 frames (i.e. ˛ D i=50). These are located in the
explore/screen space and explore/latent space directories of the project source. You can cre-
ate an interpolating sequence between two random seeds by running the provided Python script with
a pretrained generative model. A series of arguments such as model type and number of frames can
be specified. For more info, simply run the program with the help flag.

5 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

(a) Vanilla GAN

(b) WGAN

Figure 6. Interpolating in screen space for different generative models. Each image is generated
using two fixed latent variables and computing x0 D ˛x0 C .1 � ˛/x1; ˛ 2 Œ0; 1�.

6 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

(a) Vanilla GAN

(b) WGAN

Figure 7. Interpolating in latent space for different generative models. Each image is generated
using a different latent variable z0 D ˛z0 C .1 � ˛/z1; ˛ 2 Œ0; 1�.

7 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

4 QUANTITATIVE EVALUATIONS

4.1 RESULTS FOR INCEPTION AND MODE SCORE

We computed the Inception score and Mode score for both models using N D 4096 generated
images. The results are shown in the bar graph below.

Figure 8. Evaluating the performance of our trained GAN and WGAN using different metrics.

4.2 DISCUSSION ON SCORING METHODS

The Inception score is

IS.Pg/ D exp
�
Ex�Pg

�
DKL

�
pM .yjx/kpM .y/

���
and the Mode score is

MS.Pg/ D exp
�
Ex�Pg

ŒDKL
�
pM .yjx/kpM .y/

�
� � DKL

�
pM .y/kpM .y

�/
��
;

where pM .yjx/ denotes the label distribution of x as predicted by M , pM .y/ is the marginal over
the probability measure Pg and pM .y

�/ is the marginal over the real data.

One problem with the Inception score is that it only takes into account the “crispness” of the gen-
erated images, and leaves out whether the generating distribution actually ressembles that from the
real data that we are trying to model. The Mode score corrects for this by adding the second DKL
term. We pay a small price in the time it takes to calculate this score however.

Taking this into account, we observe that our vanilla GAN model generates better images than our
WGAN model, as reflected by the Mode score. This indicates that it better models the true data
distribution, as compared to our WGAN model which has a higher Inception score. Nonetheless, we
should remain skeptical of this conclusion since a human observer would always prefer the samples
from the GAN model than from the WGAN model.

8 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

REFERENCES

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, pp. 214–223, 2017.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural In-
formation Processing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Im-
proved training of wasserstein gans. CoRR, abs/1704.00028, 2017.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, and Zhen Wang. Multi-class generative
adversarial networks with the L2 loss function. CoRR, abs/1611.04076, 2016.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

9 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

A GENERATED EXAMPLES

(a) Vanilla GAN

(b) WGAN

Figure 9. 100 generated images using both models trained for 50 epochs. All images look more
or less plausible, but we can note a small mode collapse in the case of the vanilla GAN as multiple
values of z map to the same image (1,2).

10 of 11



IFT6135 REPRESENTATION LEARNING S. Laferrière & J. Litalien

(a) LSGAN after 44 epochs

(b) LSGAN after 50 epochs

Figure 10. 100 generated images using our trained LSGAN using the same hyperparameters as the
vanilla GAN. Total mode collapse occurs at the end of training time.

11 of 11


	Overview
	Architecture
	Training the Networks
	Increasing the Feature Map Size

	Qualitative Evaluations
	DCGAN vs. WGAN Visual Comparison
	Latent Space Exploration
	Screen and Latent Space Interpolation

	Quantitative Evaluations
	Results for Inception and Mode Score
	Discussion on Scoring Methods

	Generated Examples

