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Fig. 1. We generalize the Metropolis–Hastings algorithm with delayed rejection [Green and Mira 2001; Tierney and Mira 1999]: our delayed rejection Metropolis
light transport (DRMLT) method selectively applies different mutation strategies, improving upon one-stage primary sample space algorithms, i.e., PSSMLT

[Kelemen et al. 2002] with Gaussian proposals (PSSMLT / G) and H2MC [Li et al. 2015]. One variant of our method first attempts an isotropic Gaussian

proposal, resorting to more intricate kernels (that improve local exploration with differential information) only when the first attempt failed, e.g., on rough

dielectrics. DRMLT focuses computations in hard-to-explore regions without compromising quality in comparatively simpler regions (e.g., on the board). We

visualize a per-pixel relative second-stage acceptance, where violet and yellow extremes respectively indicate the efficiency of the first and second stages.

Designing robust mutation strategies for primary sample space Metropolis

light transport is a challenging problem: poorly-tuned mutations both hinder

state space exploration and introduce structured image artifacts. Scenes with

complex materials, lighting and geometry make hand-designing strategies

that remain optimal over the entire state space infeasible. Moreover, these

difficult regions are often sparse in state space, and so relying exclusively on

intricate—and often expensive—proposal mechanisms can be wasteful where

simpler inexpensive mechanisms are more sample efficient. We generalize

Metropolis–Hastings light transport to employ a flexible two-stage mutation

strategy based on delayed rejectionMarkov chainMonte Carlo. Our approach

generates multiple proposals based on the failure of previous ones, all while

preserving Markov chain ergodicity. This allows us to reduce error while

maintaining fast global exploration and low correlation across chains. Direct
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application of delayed rejection to light transport leads to low acceptance

probabilities, and so we also propose a novel transition kernel to alleviate

this issue. We benchmark our approach on several applications including

bold-then-timid and cheap-then-expensive proposals across different light
transport algorithms. Our method is applicable to any primary sample space

algorithmwith minimal implementation effort, producing consistently better

results on a variety of challenging scenes.

CCS Concepts: • Computing methodologies→ Ray tracing.

Additional Key Words and Phrases: Markov chain Monte Carlo light trans-

port, photorealistic rendering

1 INTRODUCTION

Photorealistic rendering simulates the physics of light propagation

according to scattering interactions between emitters and surfaces.

The radiometric dynamics of light transport can become arbitrarily

complex, especially in scenes with physically-based materials and

detailed geometry, leading to many numerical challenges. Here,

even state-of-the-art Monte Carlo (MC) methods can fall short of

accurately and efficiently integrating complex transport.

Markov chain Monte Carlo (MCMC) methods, introduced to ren-

dering by Veach and Guibas [1997] with their seminal Metropolis

light transport (MLT) algorithm, evolves correlated light paths in a

manner that guarantees convergence to the target radiometric den-

sity. MLT applies theMetropolis–Hastings algorithm [Hastings 1970;
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Fig. 2. Illustration of delayed rejection-based algorithm.Mutating the primary

sample ū using a first transition kernelQ1 yields a point v̄ that maps to light

path ȳ = S (v̄) in red. In this example, the first stage proposal is rejected due

to a significant (and unpredictable) change in the structure of the light path.

A new vector w̄ is then proposed from ū using a second Markov kernel Q2,

producing path z̄ (in green) that is more likely to be accepted.

Metropolis et al. 1953] to the path integral [Veach 1997]—an integral

over path space, the infinite-dimensional space of light transport

paths. The statistical dependence intrinsic to Markov chains allows

MLT-based techniques to locally explore high-contribution regions

in path space, as they are encountered, by sequentially perturbing

the path structure according to mutation strategies.
Despite advances in MCMC light transport [Bitterli and Jarosz

2019; Šik and Křivánek 2018], designing efficient, robust and general-

purpose mutation strategies remains an open problem. Smaller per-

turbations can improve acceptance rates, but not without often

slowing the exploration of the salient regions in state space. Al-

ternatively, larger perturbations may reduce correlation between

samples, but these proposals are often rejected as they tend to es-

cape high density regions, leading to chains getting “trapped” and

variance increase in the resulting estimator [Ashikhmin et al. 2001].

Another form of this trade-off appears when considering the run-

time cost of transitions: intricate mutation strategies can be more

effective at equal sample count while typically requiring more com-

putation; applying such costly transitions everywhere is wasteful

in simple scenarios, however completely abandoning them could

lead to under-exploration of important regions. Our work focuses

on designing efficient, flexible proposal mechanisms in such cases.

We present a two-stage proposal mechanism that automatically

balances local exploration and computational efficiency. Our ap-

proach extends delayed rejection [Green and Mira 2001; Tierney and

Mira 1999], a method for sequentially combining many transition

kernels in order to propose more robust perturbations. Delayed

rejection exploits prioritization by proposing bolder or less costly

transitions at a first stage before falling-back to more timid or ex-

pensive kernels upon failure (Figure 2). By augmenting proposal

mechanisms with such a “safety net”, our method can increase ac-

ceptance rates without compromising exploration of the state space,

especially in complex path sampling scenarios. A naïve implementa-

tion of delayed rejection can lead to zero-acceptance in the second

stage with a Markov kernel lacking global support (e.g., Kelemen-
style mutations [Kelemen et al. 2002]). We thus introduce a novel

combination of proposals to address this problem: our pairwise or-
bitalmutation conditions on both the current and first rejected states

to ensure that all states remain close to each other, thus eliminating

degenerate cases that can drag acceptance rates down. This solu-

tion is general and straightforward to implement atop any primary

sample space method.

We demonstrate the benefits of our method by integrating it into

three algorithms: PSSMLT [Kelemen et al. 2002], MMLT [Hachisuka

et al. 2014] and H2MC [Li et al. 2015] (Figure 1). Here, our two-stage

variants outperform each of their original one-stage counterparts,

resulting in smoother results on a set of challenging scenes with

different lighting, geometry and material configurations.

Concretely, we present the following contributions:

• a two-stage proposal mechanism that adjusts to local structure in

target densities,

• a novel transition kernel that alleviates vanishing acceptance in

the original delayed rejection method, and

• a benchmark of the versatility of two-stage kernels on several

MCMC applications in rendering, improving convergence at equal

time and with minimal implementation effort.

2 RELATED WORK

We review the most relevant MCMC light transport works. Šik and

Křivánek [2018] provide a comprehensive survey. Despite its name,

our approach is neither related to two-stage MCMC resampling

[Gelfand and Sahu 1994] nor to two-stage MLT [Veach 1997].

State Spaces. The MLT formulation [Veach and Guibas 1997] mu-

tates paths by directly modifying their geometry (e.g., removing a

path vertex). This approach was simplified by Kelemen et al. [2002]

with primary sample space MLT (PSSMLT), a reparameterization us-

ing an abstract sampling domain over the space of random numbers

consumed during path generation. With this simplification, paths

are represented as vectors of random variates embedded in a unit

hypercube referred to as the primary sample space (PSS).
When combined with bidirectional path tracing [Lafortune and

Willems 1993; Veach and Guibas 1995], PSSMLT generates a family

of paths of whichmanymay contribute little to no energy. To address

this limitation, multiplexed MLT (MMLT) [Hachisuka et al. 2014]

augments PSS with an extra dimension indexing across bidirectional

sampling techniques so that chains can also explore regions where

certain path sampling methods outperform others.

Concurrent works aiming to unify the two state spaces, path space

and primary sample space, apply inverse mappings from the paths

to the random numbers that produced them. Otsu et al. [2017] and

Pantaleoni [2017] convert path space mutation strategies to their

PSS representations in a manner that is agnostic to the underlying

MCMC framework. Reversible jump MLT (RJMLT) [Bitterli et al.

2018] instead applies reversible jumpmethods from statistics [Green

1995] to MMLT to map strategies without altering the sample path’s

geometry. Our method similarly draws from the MCMC literature,

adapting and extending delayed rejection to MCMC light transport.
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Parallel Tempering. Otsu et al. [2013] apply parallel tempering—or

replica exchange—to MLT to reduce the likelihood of cycling within

high energy peaks in the target distribution. At its core, replica

exchange tempers many target distributions and mutation strategies

to encourage jumps between modes. This requires tracking parallel

chains, carefully tuning temperatures parameters and/or judiciously

choosing the subspaces over which to spread chains. Kaplanyan

and Dachsbacher [2013] modify the state space by regularizing

degenerate densities and delta emission profiles, increasing the

likeliness of sampling such narrow interactions. Šik and Křivánek

[2016] extend this idea to improve global exploration while applying

parallel tempering to vertex connection and merging. Our method

does not rely on parallel tempering, and so is orthogonal to these

methods; however, the generality of our algorithm would allow

its independent application to any of the tempered chains. It is

worth noting that Hachisuka and Jensen [2011]’s approach, albeit

formulated within the replica exchange framework, can be recasted

as a special case of delayed rejection where the first transition kernel

is uniform and the target distribution is the binary visibility.

Specialized Perturbations. Another way of tackling suboptimal

exploration is by means of specialized mutations. Li et al. [2015]

propose a mutation strategy inspired by Hamiltonian Monte Carlo

[Duane et al. 1987], enabling long traversals in state space and

mitigating the chances of getting caught in high energy peaks. Their

H2MC approach leverages automatic differentiation to perform

anisotropic Gaussian mutations, but the added cost of computing

gradients and Hessians of the log-target can be significant. Jakob and

Marschner [2012]model the local differential geometry of path space

to design mutations that can explore low-dimensional manifolds of

(near-)specular chains, with Kaplanyan et al. [2014] and Hanika et al.

[2015] later extending this approach to a more natural half-vector

reparameterization. Segovia et al. [2007] first suggested multiple-try

MCMC [Liu et al. 2000] to sample paths from several candidates

and, more recently, Otsu et al. [2018] employ mutations that rely on

visibility-aware estimates of optimal cone angles at path vertices.

While capable of modeling local state space landscapes, special-

ized transitions all rely on additional technical machinery that tends

to increase both the algorithmic complexity of their resulting ren-

dering algorithms and the computational cost per perturbation.

Moreover, these mutations are often applicable only to very specific

forms of light transport effects. In contrast, our delayed rejection

method is inexpensive and is capable of effectively performing local

exploration only in challenging regions in state space. Most impor-

tantly, our method is agnostic to the underlyingMCMC perturbation

schemes and can be implemented atop any existing Metropolis–

Hastings based algorithms with minimal code modifications.

Adaptive Methods. Adaptive MCMC [Haario et al. 1998] was first

introduced to the rendering community by Hachisuka and Jensen

[2011], where a global mutation size is adapted to light transport

complexity during Metropolis-based photon tracing. Zsolnai and

Szirmay-Kalos [2013] automatically adjust large step probabilities

in PSSMLT by gathering acceptance statistics early on during the

rendering process. Lai et al. [2007] apply population MC to improve

sampling based on information collected during initial iterations of

an energy-redistribution path tracer [Cline et al. 2005].

These methods are limited to either adjusting algorithm parame-

ters or necessitating ad-hoc heuristics to maintain ergodicity as the

chains no longer satisfy the Markov property [Roberts and Rosen-

thal 2009]. Here, it is often unclear whether the adjusted parameters

will consistently perform well, or rather help only on a select set of

specialized cases. Our two-stage proposal mechanism is similar in

spirit, albeit not strictly adaptive, as it locally changes its behavior

on an as-needed basis. Moreover, it maintains detailed balance by

construction and does not require any parameter annealing over

time. In this regard, our approach is not related to adaptive MCMC

but is compatible with such schemes.

3 PRELIMINARIES

Path Integral Formulation. We briefly review the path integral

formulation of light transport. In its most general form, a light

transport algorithm seeks solutions to the measurement equation
[Veach and Guibas 1997], an integral of the form

Ij =

∫
𝒫
hj (x̄) f (x̄) dµ (x̄) , (1)

where Ij is a measurement (typically of the j-th pixel) expressed

as the integral over all possible light paths x̄ of the product of a

(pixel) reconstruction filter hj and the path throughput f , with
respect to the area-product (Lebesgue) measure µ. Paths are defined
as a sequence x̄ = (x0, x1, . . . , xk ) with endpoints x0 and xk and

intermediate scattering vertices x1, . . . , xk−1. The path throughput

is a product of reflection operators across all vertices xi . The space
of all possible paths, called path space 𝒫 , is the union over light

paths of every fixed length (k ≥ 2 vertices): 𝒫 ≜
⋃∞
k=2 𝒫

k
.

Monte Carlo Integration. Monte Carlo integration was first ap-

plied to light transport to estimate pixel intensities Ij by sampling

and averaging N independent light paths x̄i ∈ 𝒫 drawn from a

probability density function p [Kajiya 1986]:

Ij ≈ ⟨Ij ⟩
N =

1

N

N∑
i=1

hj (x̄i ) f (x̄i )
p (x̄i )

=
1

N

N∑
i=1

hj (x̄i )C (x̄i ), (2)

where C (x̄i ) ≜ f (x̄i )/p (x̄i ) is the path contribution function. The

choice of path sampling density implicitly controls the estimator’s

variance, where having p ∝∼ f increases sample efficiency and so

reduces variance. Formulating effective density functions remains

an open problem as only some factors of f are known prior to

sampling [Vorba et al. 2019].

Metropolis–Hastings Algorithm. MCMCmethods apply a different

approach to the problem, drawing a series of correlated samples (i.e.,

paths) that converge to an arbitrary (not necessarily normalized)

target distribution π . The Metropolis–Hastings (MH) algorithm

[Hastings 1970; Metropolis et al. 1953] provides one such process:

given a current state x in state space 𝒳 ⊆ Rd , we draw a proposal

statey from a pre-specified conditional densityQ (y | x )—theMarkov
transition kernel—and accept it with probability

α (x ,y) = 1 ∧
π (y)Q (x |y)

π (x )Q (y | x )
. (3)

Otherwise, it is rejected and the state x is repeated. Here, 1 ∧ η ≜
min(1,η) corresponds to the MH ratio.
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Equation (3) ensures that the Markov chain is reversible with

respect to its unique invariant density π and thus satisfies detailed

balance. Under mild regularity conditions [Robert and Casella 2005],

the chain will reach its stationary regime where the sequence of

samples obtained from this accept/reject criterion will be distributed

according to the normalized density π̃ = π/b, with b =
∫
𝒳 π (x ) dx .

MH requires only that we evaluate π̃ up to a proportionality con-

stant, making it attractive for sampling complex, high-dimensional

distributions. Indeed, MH can be used to estimate intractable inte-

grals such as the path integral Equation (1) without any specialized

knowledge of the target density.

Metropolis Light Transport. MLT [Veach and Guibas 1997] applies

MH to the measurement equation to estimate pixel intensities, with

the target π set to the scalar luminance ℓ of the path throughput.

Here, the Markov chain operates on the location of path vertices in

x̄ ∈ 𝒫 = 𝒳 . Using specialized mutations, MLT mutates chains to

locally explore regions where f (x̄) (and so ℓ(x̄)) is large, avoiding
paths that contribute little energy to the image. While the normal-

ization constant b is not required when running the MCMC sampler,

it is needed to accumulate and finalize the contributions onto the im-

age plane. This factor is commonly estimated using an independent

path sampling-based MC estimator, which can also be used to seed

initial Markov states. Unlike standard MC methods, MCMC simul-
taneously estimates all pixel intensities, as any chain can explore

many locations over the image plane.

We build upon PSSMLT [Kelemen et al. 2002], operating directly

on the space of uniform random numbers used to generate sampled

paths. Primary sample space can similarly be factored according to

path length as 𝒰 ≜
⋃∞
k=2𝒰

k
, where 𝒰k = [0, 1]O (k )

is the O (k )-
dimensional unit hypercube. In this new domain, the target function

is the luminance of

Ĉ (ū) = ( f ◦ S ) (ū) / (p ◦ S ) (ū), (4)

where S : 𝒰 → 𝒫 is a path sampling strategy that maps primary

samples ū ∈ 𝒰 = 𝒳 to light paths, that is, S (ū) = x̄. This reparam-

eterization abstracts the geometry of paths with a more compact

representation. The new importance function Ĉ (ū), however, be-
comes flatter which facilitates sampling in high density regions

when the path sampling strategy is well-fitted to the integrand. PSS

also naturally allows for symmetric proposal densities, eliminating

the need to compute transition densities Q in Equation (3).

Problem Statement. Most MCMC light transport algorithms in-

herit the same problems as classical MCMC: it is difficult to strike

a balance between local exploitation and computational cost for a

fixed number of iterations. The path contribution—which is typically

part of the target function—is multi-modal and discontinuous, which

makes reaching this compromise difficult in practice, especially in

radiometrically-complex scenes. As regions of interest in state space

can vary widely in scale, a proposal with constant footprint size

can be suboptimal. In cases where proposals are not well suited

to the target density’s profile, Markov chains can undergo several

consecutive rejections and their mixing times suffer. In rendering,

this erratic convergence manifests itself visually as fireflies, high-

luminance “splotches” and structured artifacts. This unpredictable

behavior inherent to sample correlation arguably represents the

most important practical limitations of MCMC samplers.

4 TWO-STAGE DELAYED REJECTION

We propose an extension of MLT-based algorithms to address the

mutation strategy-selection problem. Our variant of delayed rejec-

tion (DR) [Green and Mira 2001; Tierney and Mira 1999], tailored to

the form of integrands we face in light transport, allows us to con-
servatively apply a sequence of strategies, i.e., only when necessary.

At its core, DR modifies MH to admit different types of transitions at

different stages. Suppose a first candidate mutation is generated and

then rejected byMH. Rejection suggests that the proposal is not well

suited and so should be altered. Instead of retaining the current state

and proceeding to the next iteration, a different transition kernel

can be used to propose a new state within the same iteration. This
subtlety here is crucial as the application of state-dependent kernels

would invalidate reversibility [Andrieu and Thoms 2008]. Under the

DR formalism, the newly-introduced kernel is allowed to depend

on the previously rejected sample, and acceptance probabilities are

computed in a manner that preserves reversibility.

This approach allows for the design of more versatile kernels that

can be combined to propose transitions according to the underlying

complexity of eachmutation scenario, leading to broader exploration

of regions in state space at scales that fit them best. Our two-stage

framework readily applies to several MCMC applications (Section 5)

which we efficiently combine atop many existing PSS algorithms.

In general, DR-variants of these methods improve local exploration

for difficult light paths without sacrificing performance in regions

where simpler strategies suffice.

4.1 Delayed Rejection Metropolis–Hastings

We formally introduce the mathematical framework of delayed

rejection [Tierney andMira 1999]. Suppose wewish to draw samples

from a target distribution π with density π (x ) over an arbitrary state

space 𝒳 ⊆ Rd . A two-stage delayed rejection algorithm starts with

a standard MH step—that is, proposing a first state y from x with

density Q1 (y | x ) and accepting it with probability

α1 (x ,y) = 1 ∧
π (y)Q1 (x |y)

π (x )Q1 (y | x )
, (5)

where the subscript on acceptance probability indicates the stage.

If this first proposal is rejected, DR generates a new candidate z
sampled from a different density Q2 (z |y,x ), accepting it with prob-

ability

α2 (x , z) = 1 ∧
π (z)Q1 (y | z)Q2 (x |y, z) [1 − α1 (z,y)]

π (x )Q1 (y | x )Q2 (z |y,x ) [1 − α1 (x ,y)]
. (6)

Here, we read conditionals right-to-left: Q2 (z |y,x ) is the density of

sampling z conditioned on first proposing y from the current state x .
The acceptance probability in Equation (6) greedily imposes detailed

balance at both stages: the probability of proposing and rejecting a

first candidate y is Q1 (y | x ) [1 − α1 (x ,y)], and so the probability of

moving to the second stage is Q2 (z |y,x ) ×Q1 (y | x ) [1 − α1 (x ,y)].
This formulation is sufficient for preserving the chain’s reversibility.
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Fig. 3. 1D trace plots of the state trajectory for MH and DR. Some bars exceed

the display range; the vertical dashed line represents the target π |
[0,1) .

Top: A large proposal leads to long plateaus of repeated states near zero and

low acceptance. Middle: When the proposal is too small, the chain moves

slowly from one region to another, resulting in high correlation between

successive states as shown by mountain-like patterns. This results in under-

exploration of the high probability region [−1/10, 0). Bottom: DR provides a

more expressive proposal mechanism that captures both parts of the target

density. Colors correspond to which stage was accepted.

When Q2 is symmetric with respect to x and z (i.e. Q2 (z |y,x ) ≡
Q2 (x |y, z)), Equation (6) simplifies to

α2 (x , z) = 1 ∧
π (z)Q1 (y | z) [1 − α1 (z,y)]

π (x )Q1 (y | x ) [1 − α1 (x ,y)]
. (7)

Note that symmetry in Q1 is not sufficient to eliminate it from the

expression since, generally speaking, Q1 (y | z) , Q1 (y | x ).

4.2 Illustrative 1D Example

We demonstrate the behavior and benefits of DR on a simple exam-

ple by Green and Mira [2001]. Consider a one-dimensional target

distribution π with a density prescribed by a mixture of two uniform

distributions:

π (x ) =
1

2α
1
[−α,0) (x ) +

1

2β
1
[0,β ) (x ), (8)

where 1
[a,b] is the indicator function on the interval [a,b]. Suppose

α ≪ β , then when x ∈ [−α , 0) the transition kernel should prefer

smaller transitions, otherwise proposals are likely to be rejected as

they often fall outside the support of π ; however, when x ∈ [0, β )
larger transition kernels are preferable, otherwise the chain will

mix slowly. In this case, the acceptance rate will be high but global

exploration will be poor.

One option to address this scenario is to hand-tune the effective

spread region of the transition kernel to balance local exploitation

and global exploration. Unfortunately, this tuning becomes difficult

when the target density is complex and irregular, which is almost

always the case in light transport simulations. Alternatively, we can

seek such a compromise directly through delayed rejection.

Figure 3 illustrates trace plots for a Markov chain evolving with

different transition mechanisms, both with the standard Metropolis–

Hastings accept/reject step and the delayed rejection technique.

Each plot graphs the current state of each chain over time. We also

plot the resulting histogram of the estimated distribution for each

approach. Intuitively, π (x ) exhibits a large spike for [−α , 0) followed
by a low plateau for [0, β ). This example uses α = 1/10, β = 1 and

a Gaussian proposal with variance σ 2
. As expected, the chain gets

stuck for larger σ and exhibits high autocorrelation for smaller σ .
Delayed rejection mitigates the drawbacks of both proposals and

yields better exploration, as evidenced in its resulting histograms

whose bins should match the dashed line over [0, β ).

Discussion. In this 1D example, the optimal spread of the kernel

lies somewhere between α and β and hand-tuning σ would therefore

not be too tedious: indeed, adaptiveMCMC [Haario et al. 1998] could

be employed to automatically tune σ . This scale, however, is global
and might not be optimal for all regions. Relying on DR allows us to

use multiple transition kernels and automatically revert to the one

that is most suitable locally, improving chain mixing over (much)

more of the domain.

4.3 Limitations of Original Framework

In general, Tierney and Mira’s original formulation in Section 4.1

can be quite restrictive. The simplicity of Equation (6) hides one

important issue when computing the reverse probabilities: it implies

that the backward path from z to x has to follow the forward path

from x to z with time reversed. In other words, it has to pass through
the intermediate state y and get rejected. This can be problematic

when y is far from z, in which case the term Q1 (y | z)→0 as does

α2 (x , z). This holds even when Q1 is symmetric since it is not sim-

plified by cancellation from a term in the denominator. A similar

situation occurs when Q1 does not have support near its center and

y is too close to z (Figure 4). This vanishing acceptance behavior
is more pronounced when the Markov transition kernels used at

both stages have limited overlapping densities. This configuration

increases the likelihood of sampling a second point in the tails of

the first proposal density, which may occur frequently when deal-

ing with narrow, i.e., exponential distributions. The same issue was

indirectly observed by Green and Mira [2001] and later rediscovered

by Trias et al. [2009]. To the best of our knowledge, we are the first

to confront this issue directly within the DR formalism.

To see why doing so is necessary for light transport simulation,

consider the exponential transition kernel recommended by Kele-

men et al. [2002]. This so-called Kelemen-style mutation strategy

zx y

Q1 ( · | x )
Q1 ( · | y )

𝒳

Fig. 4. Failure of Tierney and Mira [1999]. Given a first stage kernel Q1

without global support over 𝒳 (e.g., Kelemen-style mutation), it is possible

to sample z in a zero-density region at the second stage, zeroing out α2 (x, z ).
We refer to this problem as the vanishing acceptance at the second stage.
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Fig. 5. Our pairwise orbital mutation. When a first state y is rejected, a

second state z is greedily sampled from a Wrapped Cauchy distribution Q2

such that it lies on the orbit 𝒪(x, y ) for each pair of primary samples. This

removes the need to account for transition ratios in the acceptance ratio.

proposes new states y = (y1, . . . ,yd ) from x as

yi = xi + sgn
(
ξ1 −

1

2

)
ϵmax exp

(
− log

ϵmax

ϵmin

ξ2

)
, (9)

where ξ1,2 ∼ U [0, 1] are uniform variates and 0 < ϵmin < ϵmax are

parameters controlling the kernel size with |yi − xi | ∈ [ϵmin, ϵmax].

Kelemen et al. originally suggested setting (ϵmin, ϵmax) = (1/1024, 1/64).
This kernel has zero support around zero, forcing minimal-distance

moves from the current state, which encourages image plane strati-

fication [Szirmay-Kalos and Szécsi 2017] by driving newly proposed

paths towards different pixel locations. The resulting density is sym-

metric and is the product of k independent PDFs at each primary

sample, allowing for lazy path construction. One consequence of

this zero-probability “hole” is that we cannot directly apply delayed

rejection when first stage samples are drawn from a Kelemen-style

kernel, as the mutation does not have global support. We propose

two approaches to address this vanishing acceptance (Figure 4), each
of which motivates a different application to light transport simula-

tions (in Section 5).

4.4 Pairwise Orbital Mutations

We first propose a novel perturbation technique designed to remove

the need for computing the ratio Γ1 ≜ Q1 (y | z) /Q1 (y | x ) in Equa-

tion (7). Suppose that Q1 is a product of circularly symmetric (i.e.

Q1 (y | z) ≡ Q1 (∥y − z∥)), independent and lower-dimensional den-

sities that partition the state space. Our key insight is that sampling

z ∼ Q2 (z |y) such that ∥z − y∥ = ∥y − x ∥ for each element of the

partition is sufficient for the ratio Γ1 to cancel out. Since surface light
transport with PSS typically uses pairwise vertex relationships, we

group coordinates pairwise and sequentially, e.g., (y1,y2), (y3,y4),
and so on. This corresponds to perturbing directional samples at

each vertex. Visually, such a second stage proposal amounts to mov-

ing along a circle that is centered at y and that passes through x
(Figure 5).

Any z located on the orbit𝒪(x ,y) ≜ {o : ∥o − x ∥ = ∥y − x ∥} will
satisfy our needs. Ideally, we want z to be close to x on the orbit

𝒪 to increase the likelihood of acceptance. Denote the direction

between the current and the proposed state asw = x −y, the radius
of the orbit as r = ∥w ∥ and the angle between this direction and

the first coordinate axis as µ. In order to sample a point close to x
on 𝒪, we wish to sample a small azimuthal θ such that the angle

between z − y and the first coordinate axis is µ ′ = µ + θ .
We construct circular distributions [Fisher 1995], over a domain

with interval [0, 2π ), by warping 1D PDFs p periodically over the

unit circle. We choose the wrapped Cauchy distribution, with PDF

Q
WCauchy

(θ ; ρ) =
1

2π

1 − ρ2

1 + ρ2 − 2ρ cosθ
, (10)

where the scale ρ ∈ [0, 1] plays a role analogous to the standard

deviation σ in a 1D normal distribution. This specific choice is

motivated by the distribution admitting a closed-form expression

for its cumulative distribution function—a requirement for inversion

sampling. The distribution approaches a uniform circular density

as ρ → 0, whereas when ρ → 1 the distribution degenerates into

a Dirac comb (namely, a 2π -periodic tempered Dirac). We finally

recover the second stage sample components by projecting back

onto the axis z = y + r (cos µ ′, sin µ ′) ∈ 𝒪. Note that this is similar

in spirit to elliptical slice sampling [Murray et al. 2010], except we

do not have to iterate the sampler to obtain a new point on the orbit.

By construction, the resulting kernel satisfies the Q2 (z |y,x ) ≡
Q2 (x |y, z) condition and the new state z, lying on 𝒪, implies that

Q1 (y | z) ≡ Q1 (y | x ). This results in the simplified acceptance ratio

α2 (x , z) = 1 ∧
π (z) [1 − α1 (z,y)]

π (x ) [1 − α1 (x ,y)]
= 1 ∧

0 ∨ [π (z) − π (y)]

π (x ) − π (y)
, (11)

where 0 ∨ η ≜ max(0,η). This acceptance probability can be evalu-

ated efficiently in a Metropolis sampler. We use orbital mutations

and this ratio in our experiments when the transition kernel of

the baseline MCMC sampler factors into a product of independent

components.

It is worth noting that this particular combination of pairwise

mutation and the wrapped Cauchy distribution is not the only ap-

proach one could use to obtain a simplified acceptance ratio. When

Russian roulette is used in PSS or in the presence of a participating

media, correlating triplets of samples (e.g., to account for free-flight

distance sampling) would be better suited than pairs. This could be

achieved, for instance, by sampling directions on a sphere according

to a von Mises–Fisher distribution [Han et al. 2007].

Limitations. Generalizing our construction to higher dimensions

with hyper-spherical distributions is feasible but more involved.

Such a generalizationwould also require correlatedmulti-dimensional

samples, and so would induce significant changes to underlying path

sampling routines. We chose the pairwise approach for its simplic-

ity and ease of integration atop traditional PSSMLT and lazy path

evaluation, leaving these alternatives to future work.

While our orbital mutation can solve the vanishing acceptance

problem, it reduces the second proposal’s choice to the choice of

circular PDF. In fact, restricting the second states to lie on an orbit

prevents our current method from using correlated proposals, such

as the anisotropic Gaussian mutations proposed by Li et al. [2015].

Using suchmutation strategies without the orbital constraints would

reintroduce the vanishing acceptance problem as was discussed in

Section 4.3. To remedy to this limitation, we propose an extension

of our approach based on the work of Green and Mira [2001].

4.5 Generalized Delayed Rejection

With Reversible Jump MCMC, Green and Mira [2001] relax the

x ↔ y ↔ z reversibility constraint by employing an additional fic-

tional state y∗ that effectively generalizes the original DR algorithm

to transdimensional moves. Below, we restrict ourselves to fixed
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y

x

z

y∗
δy δz −δy

Fig. 6. Different states involved in Green’s two stage DR algorithm using a

fictional state y∗ = z − δy . Even though Q1 (y | z ) , Q1 (y | x ) in general,

we do have that Q1 (y∗ | z ) = Q1 (y | x ) for a symmetric Q1.

dimensional mappings and present only a case of specific interest.

For the full theoretical exposition we refer to Green and Mira [2001].

Similar to the original formulation, the first move consists of

generating a sample y = x + δy in a standard MH step. If the move

is rejected, we generate a new state z = x + δz sampled according

to a different density Q2 (z |y,x ) and then consider an intermediate,

fictional state y∗ = z − (y − x ) = z − δy instead of y (Figure 6). The

new state z is then accepted with probability

α∗
2
(x , z) = 1 ∧

π (z)Q1 (y
∗ | z)Q2 (x |y

∗, z) [1 − α1 (z,y
∗)]

π (x )Q1 (y | x )Q2 (z |y,x ) [1 − α1 (x ,y)]
, (12)

where

α1 (z,y
∗) = 1 ∧

π (y∗)Q1 (z |y
∗)

π (z)Q1 (y∗ | z)
. (13)

Note that the presence of y∗ in Equation (12) induces symmetry.

Contrary to the initial formulation, we observe that its contribution

in every stage disappears when Q1 is symmetric:

α∗
2
(x , z) = 1 ∧

π (z)Q2 (x |y
∗, z) [1 − α1 (z,y

∗)]

π (x )Q2 (z |y,x ) [1 − α1 (x ,y)]
, (14)

solving the acceptance problem we discussed earlier. The special

case y∗ = y is precisely Equation (6) from Tierney and Mira [1999].

Green and Mira [2001] provide the full derivation of Equation (14).

While Green and Mira’s approach generally gives comparable

acceptance to our orbital mutation—and thus higher than Tierney

and Mira’s—it involves an extra evaluation of the target density at

y∗. In the context of light transport simulation, this requires tracing

an additional light path. As shown in Figure 7, this overhead often

results in lower performance than our orbital mutation when used

in simpler applications. In such cases, the orbital approach should

be preferred. However, when one wishes to use mutation strategies

that are not compatible with orbital mutations (such as H2MC [Li

et al. 2015]), Green and Mira’s generalization should be used.

TM ‘99TM ‘99ReferenceReference

1.7621.762 1.0421.042 0.2790.279 rMSErMSE

GM ‘01GM ‘01 OursOurs Ref.Ref.

Fig. 7. Equal time comparison of Tierney and Mira [1999], Green and Mira

[2001] and our pairwise orbital approach on the Glass of Water scene.
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1
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Fig. 8. Decision tree of our DR algorithm.

4.6 Waste-recycling for Proposed States

By design, DR generates more states than a standard Metropolis–

Hastings step. While accumulating only accepted states is viable, we

want a scheme that involves all states to avoid dismissing important

information. To this end, we adapt the use of the expected values
[Veach and Guibas 1997] to our two-stage proposal mechanism.

Consider the following observations:

• moving from state x to the first proposal y has probability

ωy = α1 (x ,y),
• getting rejected at the first stage has probability 1 − α1 (x ,y),
• once at y, moving to a second proposal z has probability α2 (y, z),
• the probability of the full sequence x → y → z occurring and

getting accepted at z is ωz = (1 − α1)α2, and
• similarly, the probability of both proposed stages failing and thus

staying at x is ωx = 1 − ωy − ωz = (1 − α1) (1 − α2).

We accumulate sample contributions at all three locations, weighted

by their corresponding probabilities ω□ (Figure 8). We observe that,

when using Equation (12), since y∗ is not a state that is directly

accessible from x , we cannot splat its contribution using the method

of expected values. Indeed, this technique amounts to accumulating

E [π (Xi ) |Xi−1 = x], but y∗ was sampled from z, not from x .

4.7 Discussion on Mixture Models

While mixture models can simulate different transition kernels,

they remain agnostic to the current state of the chain and rely on

careful mixture weight settings. In contrast, delaying the rejection

of samples provides an opportunity to adjust proposals along the

chain, automatically tempering the negative consequences of local

mismatches between transition kernel and target density. Our DR

approach applies to MCMC light transport in order to afford chains

a “second chance” to reach valuable regions in path space.

5 APPLICATIONS AND RESULTS

We validate our theory by employing our two-stage kernel to aug-

ment various MCMC light transport algorithms with more flexible

transitions. We demonstrate that this simple—yet effective—addition

increases the robustness of several techniques operating in PSS. We

group our applications into two categories:

(i) Bold-then-Timid (Section 5.1). The first stage attempts a

more adventurous transition; if it fails, we propose a more con-

servative move. Larger perturbations can improve exploration

but are more likely to be rejected; smaller perturbations provide

a “safety net” to avoid repeating the same state.

(ii) Cheap-then-Expensive (Section 5.2). The first stage uses a
simple, efficient mutation; if it fails, a more intricate kernel

is employed. This amortizes the cost of specialized mutations,

limiting their use to challenging regions in state space.
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Fig. 9. Equal time comparison of the Swimming Pool scene for delayed rejection applied to PSSMLT. Compared to PSSMLT with the standard Kelemen-style

kernel (PSSMLT / K) and with a Gaussian kernel (PSSMLT / G), DRMLT produces smoother results, thanks to our orbital mutation.

We show the pseudocode of our algorithm in Appendix A. We ana-

lyze the performance of our algorithm by tracking the relative Mean

Squared Error (rMSE) compared to a reference image, reporting the

median over several runs. Additional comparison metrics and an

interactive viewer are provided in our supplemental material. All

reference images are generated with several days of render time

in their respective baseline renderers. All comparisons are equal

time renderings running on an Intel Platinum 8160F Skylake CPU

at 2.1 GHz with 48 threads. We only include a few results per appli-

cation in our exposition and our supplemental material includes the

comprehensive superset of results. Our implementation is publicly

available online (github.com/joeylitalien/drmlt).

5.1 Bold-then-Timid

5.1.1 Kelemen Then Pairwise Orbital. The Kelemen kernel is the de

facto mutation choice for most PSS-based methods. It can, however,

be detrimental to the chain when the density is concentrated in thin

regions of the space. In these scenarios, off-centered perturbations

can lead to poor local exploration of thin highlights, which would be

better served by a more localized transition kernel. As these small

regions of the state space contribute significant energy to the final

image, locally-bad fits introduce a disproportional amount of noise

PSSMLT / GPSSMLT / G

Rod

GlossyReflection

PSSMLT / KPSSMLT / K

PSSMLT / GPSSMLT / G

ReferenceReference

DR+PSSMLT (Ours)DR+PSSMLT (Ours)

Fig. 10. Failure of Kelemen-style mutation. This scene is explicitly designed to
fail boldmutations as they cannot efficiently explore the thin highlight. Here,

the Gaussian kernel (PSSMLT / G) clearly wins over Kelemen (PSSMLT / K).

Even if our two-stage mechanism starts with a Kelemen mutation, it is able

to recover and efficiently explore the reflection on the plate.

in these regions (Figure 10). Identifying occurrences that lead to

these problems directly within a Metropolis sampler is thus difficult.

We use our pairwise orbital perturbation (Section 4.4) to reach a

good compromise by mutating paths with a more timid transition

kernel. In resorting to this more conservative proposal, chains can

suggests paths that are closer to the current one—while maintaining

a sufficiently high acceptance rate—without staying at the same state

for many iterations. This extra stage has the desired effect of slightly

moving the current path and provides an effective mechanism to

better explore local modes.

Results. We integrated DRMLT atop a PSSMLT path tracer in

Mitsuba v0.6 [Jakob 2013]. We use the kernel bounds recommended

by Kelemen and our orbital perturbation with ρ = exp(−1/4) for the
second stage. We keep this value fixed across all the experiments

that use our orbital mutation. We also show results with a Gaussian

density with variance chosen to match the acceptance rate of our

DR application. Doing so illustrates the versatility of our two-stage

approach compared to a single-stage default kernel.

Figure 9 provides an equal time comparison on the Swimming

Pool scene with complex transport from caustic and specular-

diffuse-specular paths. Standard Kelemen-style mutations

(PSSMLT / K) are too sensitive and have difficulties staying on

the specular manifold, yielding noisy images. On the other hand,

Gaussian mutations (PSSMLT / G) are less likely to fall outside a

high density region, but they are too localized and generate lumi-

nosity spikes in the image. Our two-stage algorithm (DR+PSSMLT)

work well overall, accommodating both types of mutations. Our

method also produces a smoother output, thanks to the two-stage

pixel splatting that makes use of all intermediate states. The DR

stage map visualizes per-pixel relative acceptance at the second

stage: as expected, a higher proportion of states are accepted at the

second stage in complex regions, i.e., the caustics at the bottom of

the pool and the reflected light around the pool.

5.1.2 Multiplexed Then Subpath. Our bold-then-timid approach

can further be applied to multiplexed MLT (MMLT) [Hachisuka

et al. 2014] to improve its efficiency. MMLT allows Markov chains

to adaptively select the (s, t )-bidirectional sampling strategy, where

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 11. Equal time comparisons of the scenes (Aquarium and Veach Door) for delayed rejection applied to multiplexed MLT. By using a more flexible

multiplexed kernel, our method significantly reduces variance compared to MMLT with a Kelemen-style kernel (MMLT / K) and a mixture model (MMLT / X).

s, t are the length of the emitter and sensor subpaths. Here, only

one path is computed at each iteration, avoiding the computation

of all-pairs MIS-weighted vertex contributions.

We only slightly modify MMLT when performing local pertur-

bations, fixing the bidirectional strategy instead of allowing it to

vary along the chain. Since strategy changes are rarely proposed

and accepted [Bitterli et al. 2018], this modification does not harm

performance as most of MMLT’s gains come from evaluating a sin-

gle path instead of an entire family of paths. We perturb all primary

samples with our bold mutation; for our timid mutation, we fix the

emitter subpath and only perturb the sensor subpath samples using

our pairwise orbital mutation. This choice allows us to reuse parts

of the computations from current and rejected states as only the

sensor subpath needs to be re-traced.

Results. We integrated MMLT atop Mitsuba v0.6. Figure 11 com-

pares our DR+MMLT approach to standard MMLT on scenes with

complex visibility. We also measure our performance against MMLT

using an equally weighted mixture of our two stages (MMLT / X).

Our DR+MMLT generates smoother images, has lower rMSE (on

both scenes) and performs better than its mixture counterpart. This

further supports our claim that, unlike mixture variants, our method

is able to more appropriately (and automatically) select transition

kernels based on the target density. Aqarium exhibits many light

transport phenomena, evidenced in its stage acceptance map. The

interior of the aquarium is lit by an emitter inside its casing, and

so is fairly easy to explore compared to the rest of the scene. In

contrast, the first stage for Veach Door behaves well except for a

few localized regions. The constrast in the map—e.g., around the

golden fishes and the wooden door—corresponds to abrupt changes

in luminosity which tend to be initially rejected by our sampler.

Handling Light Tracing. Extra care is needed when a full emitter

path forms the initial state of the chain, i.e., when t = 1, s = k − 1 (k
is the path length). In this scenario, we mutate the entire path twice

using our orbital mutation at the second stage to avoid proposing a

state identical to the previous one. This case alone motivates our

fixing of the bidirectional strategy across the chain: if a path gets

mutated to a full emitter one, extra considerations would be needed

to account for the sudden change of proposal distribution, without

violating reversibility. Therefore, we opt for a more transparent

approach that treats pure light tracing as a special case without

modifying the mathematical formulation of the acceptance ratios.

5.2 Cheap-then-Expensive

Simpler mutations, such as the one proposed by Kelemen, are less

expensive and can be applied more often than complex ones (in

fixed time). When working with limited resources and a target

density that is nontrivial to evaluate, choosing when to apply a more
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Fig. 12. Equal time comparison of the Rough Torus scene for delayed rejection applied to H2MC. Our two-stage method explores difficult regions with strong

directional transport and alleviates fireflies, compared to one-stage PSSMLT with an isotropic Gaussian kernel (PSSMLT / G) and fully anisotropic H2MC.

expensive/complicated transition kernel requires domain expertise.

We propose to use of DR to automate this choice.

The H2MC proposal [Li et al. 2015] uses automatic differentiation

to compute first- and second-order derivatives for every possible pair

of materials. This is costly (and so performed as a preprocess) but

enables more expressive transitions. Under the H2MC framework,

a d-dimensional state y is proposed from x as y = x + γ , where
γ ∼ 𝒩 (µx , Σx ) is sampled from a multivariate (correlated) normal

density. Here, Σx is an d × d covariance matrix that depends on

the throughput Hessian and µx is a mean variable; both depend

on the full vector of random numbers x . Most importantly, this

correlation prevents the matrix from factoring into a product of

joint densities. As such, sampling from the H2MC kernel requires a

costly eigendecomposition of the inverse Hessian.

To amortize this cost, Li et al. propose to branch to anisotropic

mutations based on a thresholded value of the Hessian L2-norm, con-

servatively falling back to simple isotropic Gaussian transitions. The

main issue with this approach is that it cannot capture anisotropy

across scales, which limits exploration potential of the Hessian-based

transition kernel.

We leverage the generalized DR framework (Section 4.5) to deter-

mine this branching more efficiently. We always perform a cheaper,

isotropic Gaussian transition first; if this fails, we resort to the more

costly H2MC transition. Note that by doing so, we need only com-

pute the extra Hessian for the second stage at z. To demonstrate

DRMLT’s flexibility, we adopt a hybrid approach with a second stage

transition set to an equally-weighted mixture of anisotropic and

isotropic Gaussians, the latter with smaller variance. This amortizes

the cost of computing Σx every time a first proposal is rejected.

Results. We demonstrate the robustness of our approach by im-

plementing DR in the differential DPT renderer [Li et al. 2015]. To

ensure a fair comparison between DR+H2MC and H2MC, we dis-

able path space lens perturbations in DPT and use the authors’ state

space reparameterization for both techniques. We apply the same

(original) parameters and a maximum path length of k = 10, allow-

ing derivatives to be precomputed in a reasonable amount of time.

We compare to PSSMLT with a Gaussian kernel matching our first

stage’s proposal and to H2MC (Figures 1 and 12).

We chose to use PSSMLT with a Gaussian transition kernel as an

example of a cheap mutation strategy; this doubles as a baseline and

the first stage in our DRMLT method. Chess has many modes of

transport, and so is challenging for an isotropic- or anisotropic-only

proposal. Rough Torus exhibits significant state space anisotropies

well-suited to the Hessian-Hamiltonian dynamics-based proposals.

Our method outperforms H2MC in both test scenes, as evidenced

by lower errors and less variance in the rendered images. On Chess,

isotropic Gaussian proposals are more effective in regions where

the target is smooth, but struggle with directional transport such as

on rough glass. In contrast, H2MC fairs better on brushed metals

and dielectrics, i.e., the chess pieces, but worse overall due to its

overhead. Rough Torus is dominated by transport concentrated

in narrow bands of the space, as shown by the heavily skewed DR

stage map, and our algorithm effectively balances the two stages

and removes bright spikes in the images. Our method automatically

finds an equilibrium between the two scenarios. Since first-stage

mutations are an order of magnitude faster to evaluate, we are able

to achieve more mutations in equal time, leading to a consistent

improvements across scenes.

5.3 Empirical Convergence Analysis

Due to correlation between MCMC samples (as opposed to indepen-

dent samples), a single run of an MCMC integrator is not represen-

tative of its ability to explore the relevant space. Therefore, we run

10 instances of each algorithm initialized at different random states

to better capture the average behavior. Since the normalization fac-

tor can vary from one initialization to another, we integrate the

luminance of the reference images to compute global scaling factors

and supply these values to every algorithm. We also compute the

standard deviation of the metrics and plot continuous error bars to

visualize the variation, to assess the stability of our method.

Figure 13 shows one result per application. We refer to our sup-

plementary material for more results. Our DRMLT approach consis-
tently outperforms its one-stage PSS counterparts, both in L1 and
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Fig. 13. Convergence plots. We visualize both the mean (thick curve) and

standard deviation (shaded regions) of the error over 10 independent runs.

Plots for all scenes and other metrics can be found in our additional material.

relative MSE. Our L1-norm performance hints to a potential smooth-

ing effect in low variance regions, due to our double-splatting. In

contrast, rMSE penalizes large outliers, such as fireflies. Our method

is robust to both metrics, as shown by the lower curves.

6 LIMITATIONS AND FUTURE WORK

While DRMLT works well in many different scenarios, it has a few

limitations in its current state.

Portability to Path Space MLT. There are several challenges in

porting the original DR algorithm from Tierney and Mira [1999]

to Veach and Guibas’ MLT. As path space perturbation strategies

are mostly complementary and designed for paths with specific

structures, choosing perturbation strategies for the two stages that

are both general and suitable is rarely feasible. As such, a complex

decision tree based on the possible path types should be established,

further obfuscating the mutation routine. We can apply our orbital

mutation directly to simple perturbations (e.g., lens and caustic) but

more intricate mutation strategies (e.g., manifold exploration [Jakob

and Marschner 2012]) need to be treated separately. This could

potentially be accomplished through inverse mappings [Bitterli

et al. 2018; Otsu et al. 2017; Pantaleoni 2017], transforming paths to

their PSS representations. We leave this as future work.

Extra care is also needed when adapting Green and Mira’s algo-

rithm to path space MLT. Indeed, this generalized version of DR

requires tracing an intermediate light path y∗ = z − δy. Naïvely
adding or transforming vertices will almost always result in paths

that escape the scene manifoldℳ. One way of alleviating this is-

sue is to project each vertex back onto the scene to obtain a new

intermediate path ỹ = projℳ (y∗). Accounting for this projection in

Equations (12–13) to retain reversibility, however, may be difficult.

Number of Stages. Our approach only attempts two stages before

conceding rejection and advancing time. While DRMLT can be gen-

eralized tom stages by enforcing detailed balance separately at each

stage i ≤ m, some problems remain. This construction gives rise

to a product of rejection probabilities

∏
i Qi [1 − αi ] that can mag-

nify the vanishing acceptance phenomenon in subsequent stages

[Mira 2001]. Moreover, the number of reversibility constraints for

these states grows geometrically with the number of stages, incur-

ring a non-negligible additional cost. As noted by Green and Mira

[2001], moving to three or more stages is typically not worthwhile,

motivating our two-stage mechanism.

Choice of Proposals. One challenge when applying DRMLT lies in

devising a sufficiently diverse sequence of proposals. This requires

understanding the scale at which mutations operate and crafting

a second stage mutation strategy that can capitalize on the short-

comings of the first. Finding innovative combinations that naturally

identify these flaws is nontrivial. Also, in some cases, a grid search

for “optimal” kernel spread and/or mixture weights could yield

performance similar to our bold-then-timid approach. By design,

DRMLT precisely avoids such tedious trial-and-error experiments

and circumvents scene-dependent parameter optimization.

6.1 Future Work

Several interesting and promising directions result from our work.

We highlight a few possibilities, below.

Differential Geometric Mutations. Given the growing ubiquity of

differentiable rendering [Li et al. 2018; Nimier-David et al. 2019], our

approach offers an attractive tool for amortizing the per-sample cost

incurred by automatic differentiation. There are other MCMC sam-

plers (e.g., Metropolis-adjusted Langevin [Livingstone and Girolami

2014] and its Riemaniann manifold variant [Girolami et al. 2011])

that exploit the geometry of the target distribution to improve ex-

ploration. It is worth revisiting alternatives that were promptly

dismissed for light transport simulation due to their seemingly high

cost. Applying DR to H2MC was the first step in this direction, and

investigating the performance of other differentiable mutations at

the second stage is a promising avenue of future work.

Improved Large Steps. DR can be applied to the large step muta-

tion, similar to Trias et al. [2009].When a large step falls in the neigh-

borhood of a target mode but is rejected by Metropolis–Hastings,

DR could be applied to reach this mode with successively smaller

steps to climb up the density hill. This effectively explores the new

region of parameter space until a new state is finally accepted or

a stopping condition is met. Identifying when an initial large step

must be followed by additional small steps remains unclear, but

doing so on a stochastic basis may foster global exploration.

Delayed Rejection Adaptive Metropolis (DRAM). Combining adap-

tiveMCMCwith DR, as suggested by Haario et al. [2006], is a natural

direction to explore. This method relies on constructing proposals

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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by fitting the covariance of the distribution at different scales. One

may (perhaps optimistically) expect to achieve similar performance

as Li et al. [2015] here, however without the need for automatic

differentiation. DRAM gives rise to a correlated transition kernel

and is built atop the original DR algorithm, and so more investiga-

tion is required to address any potentially negative effects on the

acceptance rates.

Delayed Acceptance (DA). Similar to DR, delayed acceptance [Chris-

ten and Fox 2005; Sherlock et al. 2017] could be used to combine a

cheap approximation of the target density with a two-stage version

of MH. DA tests samples against the surrogate target, promptly

dismissing those that would be unlikely to be accepted by the true

target. A second stage then uses an acceptance probability to resolve

the discrepancy between the approximation and the target, ensuring

convergence. Since evaluations of the path throughput are generally

the bottleneck of MLT-based methods, a successful application of

this method could result in considerable speedups.

7 CONCLUSION

We introduced a two-stage mutation strategy based on the delayed

rejection framework [Green and Mira 2001; Tierney and Mira 1999].

By sequentially combining two transition kernels, our method pro-

vides a form of “safety net” in order to improve local state space

exploitation without comprising global exploration. We first showed

that a naïve application of the original DR algorithm to light trans-

port simulation could lead to poor acceptance rates. To address this

problem, we developed a novel conditional mutation strategy at

the second stage. Our resulting algorithm, delayed rejection Metrop-
olis light transport (DRMLT), is simple to implement in existing

rendering systems and can be applied to any PSS-based algorithm.

We demonstrated various applications of DRMLT, namely bold-
then-timid and cheap-then-expensive strategies, that automatically

balance local exploration and computational efficiency across many

complex light transport scenarios. We believe that DRMLT is a pow-

erful approach to allow for specialized mutation strategies under

tight computational budgets.
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A PSEUDOCODE FOR THE ALGORITHM

We summarize our DRMLT approach in Algorithm 1. Here, the func-

tionMutate ( ) depends on the application, as shown in Section 5.

SamplePath ( ) maps a random number vector to a light path, ℓ

denotes the path luminance, and ξ ∼ U [0, 1]. TheMutate ( ) func-

tion for our pairwise orbital mutation is described in Algorithm 2.

Algorithm 1: Delayed Rejection MLT (DRMLT)

y ← Mutate (x , _, 1), ℓy ← SamplePath (y)
α1 ← 1 ∧ [ℓy / ℓx ]

if ξ1 < α1 then x ← y, ℓx ← ℓy
else

z ← Mutate (x ,y, 2), ℓz ← SamplePath (z)
η ← ℓz / ℓx
if [Green and Mira 2001] then

Γ2 ← Q2 (x |y
∗, z) /Q2 (z |y,x )

y∗ ← z − (y − x ), ℓy∗ ← SamplePath (y∗)
α∗ ← 1 ∧ [ℓy∗ / ℓz ]

α2 ← 1 ∧
[
η Γ2 (1 − α

∗) / (1 − α1)
]

▷ Eq. (12)
else if [Tierney and Mira 1999] then

Γ1 ← Q1 (y | z) /Q1 (y | x )
α2 ← 1 ∧

[
η Γ1 (1 − α1) / (1 − α1)

]
▷ Eq. (6)

else if [Pairwise Orbital Mutation – Sec. 4.4] then
α2 ← 1 ∧

[
[0 ∨ (ℓz − ℓy )] / (ℓx − ℓy )

]
▷ Eq. (11)

if ξ2 < α2 then x ← z, ℓx ← ℓz
SplatContribution (α1,α2,x ,y, z) ▷ Fig. 8

Algorithm 2:Mutate (x ,y, stage)

while i < Dim (x ) do
if stage = 1 then

d ∼ Q
Kelemen

(ϵmin, ϵmax) ▷ Eq. (9)

ϕ ← 2πξ
(yi , yi+1) ← (xi , xi+1) + d (cosϕ, sinϕ)

else ▷ Pairwise Orbital Mutation – Sec. 4.4

(u1, u2) ← (yi ,yi+1) − (xi ,xi+1)
µ ← arccos (−u1 / ∥u∥)
if u2 > 0 then µ ← 2π − µ
θ ∼ Q

WCauchy
(ρ) ▷ Eq. (10)

µ ′ ← µ + θ
(zi , zi+1) ← (yi , yi+1) + ∥u∥ (cos µ

′, sin µ ′)
i ← i + 2

if stage = 1 return y else return z
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